
Moxa Tech Note

Copyright © 2009 Moxa Inc. Released on Sep 28, 2009

About Moxa
Moxa manufactures one of the world’s leading brands of device networking solutions. Products include serial
boards, USB-to-serial hubs, media converters, device servers, embedded computers, Ethernet I/O servers,
terminal servers, Modbus gateways, industrial switches, and Ethernet-to-fiber converters. Our products are key
components of many networking applications, including industrial automation, manufacturing, POS, and medical
treatment facilities.

How to Contact Moxa
Tel: 1-714-528-6777
Fax: 1-714-528-6778

Web: www.moxa.com
Email: info@moxa.com

This document was produced by the Moxa Technical Writing Center (TWC). Please send your comments or
suggestions about this or other Moxa documents to twc@moxa.com.

The Secrets of RS-485 Half-duplex Communication

Casper Yang, Senior Product Manager

support@moxa.com

RS-485 is a good choice for long distance serial communication since using

differential transmission cancels out the vast majority of electromagnetic

disturbances picked up by the signal. A simple RS-485 network consists of one

master and up to 32 slave devices. Since RS-485 uses half-duplex

communication—that is, the same two wires (D+ and D- shown below) are used for

both transmission and reception—some means of controlling which side of the

connection can transmit must be built into the system. In this article, we discuss

the ADDC (Automatic Data Direction Control) concept and explain how ADDC

works.

Fig. 1: RS-485 Half-duplex Communication

D+

D -

D+

D -

Moxa Tech Note The Secrets of RS-485 Half-duplex

Copyright © 2009 Moxa Inc. Page 2 of 5

The most common way of controlling the transmit (Tx) and receive (Rx) direction is

to use an RTS signal between the UART and the RS-485 half-duplex wiring. By

adding a simple logic circuit (see Fig. 2), you can turn RTS on or off to switch the

direction between Tx and Rx. That is, to transmit data you turn RTS on, and then

you turn it off when the transmission is finished. Although the overall concept is

easy to describe and understand, devising a precise enough timing mechanism can

be quite a challenge.

Fig. 2: Using RTS to Control Data Direction

In most cases, the RS-485 bus uses a master-slave architecture, which requires

that each device on the RS-485 bus have a unique id. The master will send a

command with an id and ask each slave to respond one by one. The default RTS

state is off, which means that all devices are in the Rx state and are waiting to

receive data (either a command or a response to a command) from one of the other

devices. A typical scenario is as follows:

(1) The master switches to the Tx state, transmits a command to query a device,

and then switches back to the Rx state and waits for a response.

(2) The slave whose id matches the id queried by the master switches to the Tx

state, transmits its response, and then switches back to the Rx state.

UART
D +

D -

Tx

Rx

RTS

Moxa Tech Note The Secrets of RS-485 Half-duplex

Copyright © 2009 Moxa Inc. Page 3 of 5

If the master switches back to the Rx state too slowly, it will not receive the entire

response. If the master switches back too quickly, the command will not be sent

correctly. To control the timing properly, you need to know when the data was sent

out.

Fig. 3: Using RTS to Control Direction

UART Holding and Shift Registers—For Controlling the UART Directly

With the UART’s Transmitter Empty Interrupt (TxINT) enabled, you may think it’s

okay to turn the RTS to off if no more data need to be sent. However, checking the

TxINT value will only tell you that the holding register is empty, when in fact an

additional byte could still be transmitting from the shift register. The UART’s

transmit shift register is used to transmit data bit by bit. Every time you put data in

the FIFO, the UART will move data into the shift register automatically. To confirm

that the shift register is empty, you need to read the Line Status Register (LSR) and

check if both the Transmitter Holding Register Empty (THRE) bit and Transmitter

Empty (TEMT) bit are set or not. If both are set, it is safe to turn the RTS to off.

Tx: Command
Rx State

Response
Rx State

Slave

Master

Master-RTS

If too fast, the slave cannot receive
all commands from the master.

If too slow, the master cannot receive
all responses from the slave.

Good
Timing

Moxa Tech Note The Secrets of RS-485 Half-duplex

Copyright © 2009 Moxa Inc. Page 4 of 5

UART Enhanced Mode with TTL Setting—For Controlling the UART Directly

To improve performance some advanced UARTs, such as the 16950 and Moxa’s

MU150/MU860, support “Transmit Interrupt Trigger Level” (TTL). This level defines

when the UART needs to issue a Transmitter Empty Interrupt (TxINT) and cause

the Interrupt Service Routine (ISR) to put more data into the UART. With this level

set to a nonzero value, the UART can issue an interrupt even though some data is

still queued in the Tx FIFO. To work properly in an RS-485 application, you need to

set TTL to zero. This means that if you get a TxINT, the UART holding register and

shift register are empty and you can turn RTS to off immediately if no more data in

the buffer needs to be sent.

Applications in Win32 and UNIX/Linux—For Serial Application

Programmers

In most cases, you do not need to control the UART manually, and instead just use

the API provided by the operating system. You can use WriteFile() for Win32

systems, and write() for UNIX/Linux systems. Win32 provides the function

RTS_CONTROL_TOGGLE to work with the RTS automatically. If fRtsControl is set to

this value in the DCB structure by calling SetCommState(), the driver should turn

RTS on automatically before sending the data and turn RTS off automatically when

it finishes. Before using this approach, you should first make sure that it is

supported by the vendor if you are using a serial expansion solution (which means

that you are not using serial.sys, Windows’ built-in serial port driver). If

RTS_CONTROL_TOGGLE is not supported, controlling RTS manually will cause a lot

of timing problems, and is not reliable.

For UNIX/Linux, the POSIX tty API does not support the RTS toggle function, and

you need to control RTS manually. In this case, you can call tcdrain() to wait until

data is sent and turn RTS off. The problem is that tty drivers only check the driver

buffer and UART holding register. Unfortunately, there is no way to confirm that the

shift register is empty. If you really want to use RS-485 in UNIX/Linux with RTS

control, you need to modify the driver or call your vendor for support.

Moxa Tech Note The Secrets of RS-485 Half-duplex

Copyright © 2009 Moxa Inc. Page 5 of 5

Working with Virtual Serial Ports—For Serial Application Programmers

If the serial port is a “virtual” port, such as is created by a USB-to-serial or

Ethernet-to-serial product, it’s not easy to know when all the data has been sent

out because the driver needs to work with the firmware in the product and not a

real UART. For virtual serial drivers, the write operation will be finished immediately

when the data is moved to the local driver buffer. This is good for performance but

is not good for RS-485 RTS control. If you turn RTS off immediately when the write

operation is finished, the data will still be transmitting, which will cause problems.

In this case, in Win32 you can use RTS_CONTROL_TOGGLE if it is supported by the

driver. If not, you need to see if the driver supports an advanced option (such as

Moxa’s “classical mode” in UPort and NPort) for confirming that all data will be sent

out before the WriteFile() is returned. For virtual serial ports it is impossible to

control RTS manually without RTS_CONTROL_TOGGLE or classical mode supported

in Windows/UNIX/Linux.

Controlling RTS Automatically—For Everyone

Controlling RTS by software (driver or application) can give rise to a number of

problems, and consequently many hardware vendors solve this problem by

controlling the direction automatically. This means that the RS-485 hardware can

switch the Tx/Rx direction automatically, such as is done with Moxa’s ADDC

(Automatic Data Direction Control) function. It is compatible with existing software

and if you want to transmit commands over the RS-485 bus, you can just send,

instead of worrying about controlling the RTS signal. The hardware will detect the

action and switch to the Tx state automatically. Note that some converter products

require users to configure the baudrate first. Please read the manual of your

product for detailed information.

Conclusion

A good way to simplify RS-485 implementation is to choose a product that supports

ADDC. With ADDC you do not need to waste time modifying your programming to

match the timing. You can keep your existing programming as is, and rest assured

that it works with ADDC. Controlling the RTS on/off process will be ignored by

ADDC, and all you need to do is configure the hardware properly.

