
Moxa C Programmable RTU Controllers
User’s Manual

Edition 6.0, February 2017

www.moxa.com/product

© 2017 Moxa Inc. All rights reserved.

Moxa C Programmable RTU Controllers
User’s Manual

The software described in this manual is furnished under a license agreement and may be used only in accordance with
the terms of that agreement.

Copyright Notice

© 2017 Moxa Inc. All rights reserved.

Trademarks

The MOXA logo is a registered trademark of Moxa Inc.
All other trademarks or registered marks in this manual belong to their respective manufacturers.

Disclaimer

Information in this document is subject to change without notice and does not represent a commitment on the part of
Moxa.

Moxa provides this document as is, without warranty of any kind, either expressed or implied, including, but not limited
to, its particular purpose. Moxa reserves the right to make improvements and/or changes to this manual, or to the
products and/or the programs described in this manual, at any time.

Information provided in this manual is intended to be accurate and reliable. However, Moxa assumes no responsibility for
its use, or for any infringements on the rights of third parties that may result from its use.

This product might include unintentional technical or typographical errors. Changes are periodically made to the
information herein to correct such errors, and these changes are incorporated into new editions of the publication.

Technical Support Contact Information

www.moxa.com/support

Moxa Americas
Toll-free: 1-888-669-2872
Tel: +1-714-528-6777
Fax: +1-714-528-6778

 Moxa China (Shanghai office)
Toll-free: 800-820-5036
Tel: +86-21-5258-9955
Fax: +86-21-5258-5505

Moxa Europe
Tel: +49-89-3 70 03 99-0
Fax: +49-89-3 70 03 99-99

 Moxa Asia-Pacific
Tel: +886-2-8919-1230
Fax: +886-2-8919-1231

Moxa India
Tel: +91-80-4172-9088
Fax: +91-80-4132-1045

Table of Contents

1. Introduction .. 1-1
Overview ... 1-2
Software Architecture .. 1-2

Journaling Flash File System (JFFS2) ... 1-3
Software Package .. 1-4

Available Products .. 1-4
ioPAC 8020-C Series .. 1-4
ioLogik W5348-C Series ... 1-5

Product Specifications ... 1-5
ioPAC 8020 Series ... 1-5
ioLogik W5348 Series .. 1-6

2. Getting Started ... 2-1
I/O and Communication Module Installation ... 2-2
KM-2430 DIP Switch Setting .. 2-3
Installing the RTU Controller on a DIN-Rail .. 2-4

ioPAC 8020-C Series .. 2-4
ioLogik W5348-C Series ... 2-5

Grounding the RTU Controller ... 2-6
ioPAC 8020-C Series .. 2-6
ioLogik W5348 Series: ... 2-6

Powering on the RTU Controller .. 2-6
LED Indicators .. 2-8

ioPAC 8020-C Series .. 2-8
ioLogik W5348-C Series ... 2-8

Connecting the RTU Controller to a PC ... 2-8
Serial Console ... 2-8

Telnet Console ... 2-11
SSH Console .. 2-12
RTUAdmin Utility .. 2-12

Installing RTUAdmin .. 2-13
Broadcast Search .. 2-13
Main Screen Overview.. 2-13

Configuring the Ethernet Interface .. 2-15
Modifying Network Settings via Serial Console .. 2-15
Adding a Default Gateway .. 2-16
Adding DNS Settings ... 2-16

Developing Procedures .. 2-16
Installing the Tool Chain (Linux) .. 2-17
Checking the Flash Memory Space ... 2-17
Compiling Hello.c .. 2-17
Uploading and Running the “Hello” Program ... 2-18

3. Managing the RTU Controllers ... 3-1
System Version Information ... 3-2
Firmware Upgrade and Default Settings ... 3-2

Upgrading the Firmware ... 3-2
Loading Factory Defaults .. 3-3

Enabling and Disabling Daemons .. 3-3
Setting the Run-Level .. 3-4
Adjusting the System Time .. 3-5

Setting the Time Manually .. 3-5
Updating the Time with NTP Client ... 3-6
Updating the Time Automatically ... 3-6

Executing Scheduled Commands with Cron Daemon ... 3-7
4. Managing Communications ... 4-1

Telnet/FTP ... 4-2
Enabling the Telnet/FTP Server ... 4-2
Disabling the Telnet/FTP Server .. 4-2

DNS .. 4-2
IPTABLES .. 4-3

Observe and Erase Chain Rules ... 4-5
Define Policy for Chain Rules .. 4-5
Append or Delete Rules .. 4-6

NAT .. 4-7
NAT Example .. 4-7
Enabling NAT at Bootup ... 4-7

Dial-up Service—PPP ... 4-8
PPPoE.. 4-11

PPP over Cellular .. 4-12
NFS (Network File System) .. 4-13

Setting up the RTU Controller as an NFS Client ... 4-13
Mail .. 4-13
OpenVPN ... 4-14

5. Tool Chains for Application Development .. 5-1
Linux Tool Chain ... 5-2

Installing the Linux Tool Chain .. 5-2
Compiling Applications ... 5-3
On-Line Debugging with GDB .. 5-3

6. Programmer's Guide ... 6-1
Flash Memory ... 6-2
C Library ... 6-2

APIs .. 6-2
7. Software Lock ... 7-1
A. System Commands .. A-1
B. Module Specifications and Wiring .. B-1

1
1. Introduction

The Moxa C programmable RTU controller is a system with 1 or 2 10/100 Mbps Ethernet ports, an internal SD
socket, 1 or 2 RS-232/422/485 serial ports, built-in or user-selectable modular I/Os, and pre-installed
operating system, depending on the specific model. The Moxa C programmable RTU controller offers
high-performance communication capability, and high storage capacity in one compact and rugged box. It is
the ideal solution for stand-alone, remote monitoring applications in hard-to-wire environments, and
applications that require a great deal of memory space, advanced processing power, integration with physical
I/O channels, and other peripherals.

The following topics are covered in this chapter:

 Overview

 Software Architecture

 Journaling Flash File System (JFFS2)

 Software Package

 Available Products

 ioPAC 8020-C Series

 ioLogik W5348-C Series

 Product Specifications

 ioPAC 8020 Series

 ioLogik W5348 Series

Moxa C Programmable RTU Controllers Introduction

 1-2

Overview
The Moxa C programmable RTU controller uses the Moxa ART RISC CPU. The RISC architecture and advanced
semiconductor technology provide the RTU controller with a powerful computing engine and communication
functions without generating a lot of heat. A 32 MB NOR Flash ROM, 64 MB on-board SDRAM, and an SD socket
provide enough memory for you to install application software and store data directly on the RTU controller. In
addition, the cellular modem, the Ethernet switch ports, and 3-in-1 serial interfaces create the best flexibility
to communicate with field devices and with the central host, making the Moxa C programmable RTU controller
ideal for remote data acquisition and industrial control applications.

The pre-installed operating system (OS) provides an open operating system for your software program
development. Software that runs on desktop PCs can be easily exported to the RTU controller with a cross
compiler. The software development package also provides versatile API functions, such as I/Os and
communication control, SCADA connection, alarms, and Modbus communication.

Software Architecture
The operating system that is pre-installed in the Moxa C programmable RTU controller follows a standard
Linux-based architecture; the program porting can be done with the Tool Chain provided by Moxa.

The built-in Flash ROM is partitioned into Boot Loader, Kernel, Root File System, and User directory
partitions.

In order to prevent user applications from crashing the Root File System, the Moxa C programmable RTU
controller uses a unique Root File System with Protected Configuration for emergency use. This Root File
System comes with serial and Ethernet communication capability for users to load the Factory Default
Image file. User settings and applications are saved in the user directory.

Moxa C Programmable RTU Controllers Introduction

 1-3

To improve system reliability, the Moxa C programmable RTU controller has a built-in mechanism that prevents
the system from crashing. When the kernel boots up, the RTU will mount the root file system in read only mode,
and then enable services and daemons. At the same time, the kernel will start searching for system
configuration parameters via rc or inittab.

Normally, the kernel uses the Root File System to boot up the system. The Root File System is protected, and
cannot be changed by users, which creates a safe zone for users.

For more information about the memory map and programming, refer to Chapter 6, Programmer’s Guide.

Journaling Flash File System (JFFS2)
The Root File System and User directory in the flash memory is formatted with the Journaling Flash File
System (JFFS2). The formatting process places a compressed file system in the flash memory. This operation
is transparent to users.

The Journaling Flash File System (JFFS2), which was developed by Axis Communications in Sweden, puts a file
system directly on the flash, instead of emulating a block device. It is designed for use on flash-ROM chips and
recognizes the special write requirements of a flash-ROM chip. JFFS2 implements wear-leveling to extend the
life of the flash disk, and stores the flash directory structure in the RAM. A log-structured file system is
maintained at all times. The system is always consistent, even if it encounters crashes or improper
power-downs, and does not require fsck (file system check) on boot-up.

JFFS2 is the newest version of JFFS. It provides improved wear-leveling and garbage-collection performance,
improved RAM footprint and response to system-memory pressure, improved concurrency and support for
suspending flash erases, marking of bad sectors with continued use of the remaining good sectors (enhancing
the write-life of the devices), native data compression inside the file system design, and support for hard
links.ative data compression inside the file system design, and support for hard links.

The key features of JFFS2 are:

• Targets the Flash ROM Directly

• Robustness

• Consistency across power failures

• No integrity scan (fsck) is required at boot time after normal or abnormal shutdown

• Explicit wear leveling

• Transparent compression

Although JFFS2 is a journaling file system, this does not preclude the loss of data. The file system will remain
in a consistent state across power failures and will always be mountable. However, if the system is powered
down during a write then the incomplete write will be rolled back on the next boot, but writes that have already
been completed will not be affected.

Additional information about JFFS2 is available at:
http://sources.redhat.com/jffs2/jffs2.pdf
http://developer.axis.com/software/jffs/
http://www.linux-mtd.infradead.org/

Moxa C Programmable RTU Controllers Introduction

 1-4

Software Package
Boot Loader Moxa Boot Loader (v1.2)

Kernel Linux 2.6.9 (ioPAC 8020 & ioLogik W5348 V1.4 supports Linux 2.6.38)

Protocol Stack ARP, PPP, CHAP, PAP, IPv4, ICMP, TCP, UDP, DHCP, FTP, NTP, NFS, SMTP, SSH
1.0/2.0, SSL, Telnet, PPPoE, OpenVPN

File System JFFS2, NFS, Ext2, Ext3, VFAT/FAT

OS shell command Bash

Busybox Linux normal command utility collection

Utilities

telnet Telnet client program

ftp FTP client program

Daemons

pppd Dial in/out over serial port daemon

telnetd Telnet server daemon

inetd TCP server manager program

ftpd FTP server daemon

sshd Secure shell server

openvpn Virtual private network

openssl Open SSL

Linux Tool Chain

Gcc (V3.3.2) C/C++ PC Cross Compiler

GDB (V5.3) Source Level Debug Server

Glibc(V2.2.5) POSIX standard C library

Linux Tool Chain (ioPAC 8020 & ioLogik W5348 V1.4)

Gcc (V4.4.2) C/C++ PC Cross Compiler

GDB (V7.0.1) Source Level Debug Server

Glibc (V2.10.1) POSIX standard C library

Available Products

ioPAC 8020-C Series
ioPAC 8020-5-M12-C-T: ioPAC 8020 modular RTU controller with dual M12 Ethernet LAN ports and 5 I/O
slots, C programming capability, -40 to 75°C operating temperature

ioPAC 8020-5-RJ45-C-T: ioPAC 8020 modular RTU controller with dual RJ45 Ethernet LAN ports and 5 I/O
slots, C programming capability, -40 to 75°C operating temperature

ioPAC 8020-9-M12-C-T: ioPAC 8020 modular RTU controller with dual M12 Ethernet LAN ports and 9 I/O
slots, C programming capability, -40 to 75°C operating temperature

ioPAC 8020-9-RJ45-C-T: ioPAC 8020 modular RTU controller with dual RJ45 Ethernet LAN ports and 9 I/O
slots, C programming capability, -40 to 75°C operating temperature

RM-1602-T: ioPAC I/O module with 16 digital inputs, 24 VDC sink/source type, -40 to 75°C operating
temperature

RM-1050-T: ioPAC I/O module with 10 digital inputs, 110 VDC, -40 to 75°C operating temperature

RM-2600-T: ioPAC I/O module with 16 digital outputs, 24 VDC sink type, -40 to 75°C operating temperature

RM-3802-T: ioPAC I/O module with 8 analog inputs, 4 to 20 mA, -40 to 75°C operating temperature

RM-3810-T: ioPAC I/O module with 8 analog inputs, 0 to 10 V, -40 to 75°C operating temperature

KM-2430-T: ioPAC 4-port unmanaged Ethernet swtich module with M12 connector, -40 to 75°C operating temperature

Moxa C Programmable RTU Controllers Introduction

 1-5

Conformal Coating: Available on request

NOTE The 9th slot of the ioPAC 8020-9 series is reserved for future expansion. All I/O modules may only be installed
in slot 1 through slot 8.

ioLogik W5348-C Series
ioLogik W5348-HSDPA-C: HSDPA micro RTU controller with 4 AIs, 8 DIOs, 2 relay outs, C programming
capability, -10 to 55°C operating temperature

ioLogik W5348-HSDPA-C-T: HSDPA micro RTU controller with 4AIs, 8 DIOs, 2 relay outs, C programming
capability, -20 to 70°C operating temperature

Product Specifications

ioPAC 8020 Series
Computer
CPU: ARM9 based CPU, 32-bit/160 MHz
OS: Linux
Clock: Real-time clock with battery backup
SDRAM: 64 MB
Flash: 32 MB
SD™ Slot: Up to 32 GB (SD 2.0 compatible)
Note: For units operating in extreme temperatures, industrial grade, wide-temperature SD cards are required.

 Ethernet Interface
LAN: 2 auto-sensing 10/100 Mbps switch ports (M12 or RJ45)
Ethernet Relay Function: Hardware Normal Close
Protection: 1.5 KV magnetic isolation

 Serial Interface
Serial COM1: RS-232/422/485 (DB9 male)
Serial Debug Port: RS-232 (4-pin connector)

 Serial COM1 Signals
RS-232: TxD, RxD, DTR, DSR, RTS, CTS, DCD, GND
RS-422: TxD+, TxD-, RxD+, RxD-, GND
RS-485-4w: TxD+, TxD-, RxD+, RxD-, GND
RS-485-2w: Data+, Data-, GND

 Power Requirements
Input Voltage: 12 to 36 VDC
Note: Compliant with EN 50155 at 24 VDC
Power Consumption: R[25]C184 mA @ 24 VDC (without I/O modules)

 Physical Characteristics
Housing: Aluminum
Dimensions:
5-slot Version: 190.9 x 135 x 100 mm (7.52 x 5.31 x 3.94 in)
9-slot Version: 292.5 x 135 x 100 mm (11.52 x 5.31 x 3.94 in)
I/O Module Slots: 5 or 9 slots (the 9th slot is reserved)
Weight:
5-slot Version: 2,000 g
9-slot Version: 2,575 g
Mounting: DIN rail (standard), wall (with optional kit)

Moxa C Programmable RTU Controllers Introduction

 1-6

Environmental Limits
Operating Temperature: -40 to 75°C (-40 to 167°F)
Storage Temperature: -40 to 85°C (-40 to 185°F)
Ambient Relative Humidity: 5 to 95% (non-condensing)
Altitude: Up to 2000 m
Note: Please contact Moxa if you require products guaranteed to function properly at higher altitudes.

 Standards and Certifications
Safety: UL 508
EMI:
EN 61000-3-2; EN 61000-3-3; EN 61000-6-4;
FCC Part 15, Subpart B, Class A
EMS:
EN 55024, EN 61000-4-2, EN 61000-4-3,
EN 61000-4-4, EN 61000-4-5, EN 61000-4-6,
EN 61000-4-8, EN 61000-4-11, EN 61000-6-2
Shock: IEC 60068-2-27
Freefall: IEC 60068-2-32
Vibration: IEC 60068-2-6
Rail Traffic: EN 50155, EN 50121-3-2, EN 50121-4
Green Product: RoHS, CRoHS, WEEE
Note: Please check Moxa’s website for the most up-to-date certification status.

 MTBF (mean time between failure)
Time: 690,214 hrs
Database: Telcordia (Bellcore)

 Warranty
Warranty Period: 5 years
Details: See www.moxa.com/warranty

ioLogik W5348 Series
Computer
CPU: ARM9 based CPU, 32-bit/160 MHz
SDRAM/Flash: 64 MB / 32 MB

 Storage
Expansion Slot: Up to 32 GB SD™ memory card (SD 2.0 compatible)
Note: For units operating in extreme temperatures, industrial grade, wide-temperature SD cards are required.

 Cellular
Network:
ioLogik W5348-HSDPA-C:
• Tri-band UMTS/HSDPA 850/1900/2100 MHz
• Quad-band GSM/GPRS/EDGE 850/900/1800/1900 MHz
Internet:
HSDPA:
• Up to 3.6M bps upload speed.
• Up to 384k bps download speed.
UMTS:
• Up to 384k bps upload/download speed.
GPRS/EDGE:
• Multi-slot class: Class 10
• Coding schemes: CS 1-4, MCS 1-9
• Terminal device class: Class B
SMS: Point-to-Point Text/PDU mode
SIM Control Voltage: 3 V

Moxa C Programmable RTU Controllers Introduction

 1-7

LAN
Ethernet: 1 x 10/100 Mbps, RJ45
Protection: 1.5 KV magnetic isolation
Protocols: Modbus/TCP, TCP/IP, UDP, DHCP, Bootp, SNMP, SNTP

 Serial Communication
Interface: 2 x RS-232/422/485, software selectable (9-pin D-Sub male)
Baudrate:
300, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 bps

 Inputs and Outputs
Analog Inputs: 4 channels
Configurable DIOs: 8 channels
Relay Outputs: 2 channels
Isolation: 3K VDC or 2K Vrms

 Analog Input
Type: Differential input
Resolution: 16 bits
I/O Mode: Voltage / Current
Input Range: 0 to 10 V, ±10 V, ±5 V, 0 to 20 mA, 4 to 20 mA
Accuracy:
• ±0.1% FSR @ 25°C
• ±0.3% FSR @ -30 and 70°C
Sampling Rate:
W5348:
• All channels: 5 samples/sec
• Per channel: 1.25 samples/sec
Input Impedance: 200K ohms (min.)
Built-in Resistor for Current Input: 102 ohms

 Digital Input
Sensor Type: Wet Contact (NPN or PNP) and Dry Contact
I/O Mode: DI or Event Counter
Dry Contact:
• On: short to GND
• Off: open
Wet Contact (DI to GND):
• On: 0 to 3 VDC
• Off: 10 to 30 VDC
Common Type: 4 points per COM
Counter Frequency: 25 Hz
Digital Filtering Time Interval: Software selectable/Programmable

 Digital Output
Type: Sink
I/O Mode: DO or Pulse Output
Pulse Output Frequency: 50 Hz
Over-voltage Protection: 45 VDC
Over-current Protection: 2.6 A (4 channels @ 650 mA)
Over-temperature Shutdown: 160°C (min.)
Current Rating: 200 mA per channel
DIO Output Leakage Current: 3.6 mA @ 24 VDC

Moxa C Programmable RTU Controllers Introduction

 1-8

Relay Output
Type: Form A (N.O.) power relay
Contact Current Rating:
• Resistive Load: 1 A @ 30 VDC, 250 VAC, 110 VAC
Initial Insulation Resistance: 1000 m ohms (min.) @ 500 VDC
Mechanical endurance: 5,000,000 operations
Electrical endurance: 600,000 operations @ 1 A resistive load
Contact Resistance: 100 m ohms (max.)
Pulse Output: 0.3 Hz at rated load

 Power Requirements
Power Input: 24 VDC nominal, 12 to 36 VDC
Power Consumption:
ioLogik W5348-HSDPA-C:
• Always on: 196 mA @ 24 VDC
• On demand: 189 mA @ 24 VDC

 Physical Characteristics
Dimensions: 46.8 x 135 x 105 mm (1.84 x 5.31 x 4.13 in)
Weight: 495 g
Mounting: DIN-rail (standard), wall (optional)

 Environmental Limits
Operating Temperature:
Standard Models: -10 to 55°C (14 to 131°F)
Wide Temp. Models:
ioLogik W5348-HSDPA-C: -20 to 70°C (-4 to 158°F)
Storage Temperature: -40 to 85°C (-40 to 185°F)
Ambient Relative Humidity: 5 to 95% (non-condensing)
Altitude: Up to 2000 m
Note: Please contact Moxa if you require products guaranteed to function properly at higher altitudes.

 Standards and Certifications
Safety: UL 508, EN 60950-1, NCC
EMI:
EN 55032; EN 61000-3-2; EN 61000-3-3;
FCC Part 15, Subpart B, Class A
EMS:
EN 55024, EN 61000-4-2, EN 61000-4-3,
EN 61000-4-4, EN 61000-4-5, EN 61000-4-6,
EN 61000-4-8, EN 61000-4-11, EN 61000-6-2
Mobile Network: PTCRB
Shock: IEC 60068-2-27
Freefall: IEC 60068-2-32
Vibration: IEC 60068-2-6
Green Product: RoHS, CRoHS, WEEE
Note: Please check Moxa’s website for the most up-to-date certification status.

 MTBF (mean time between failure)
Time:
ioLogik W5348-HSDPA-C: 280,739 hrs.
Database: Telcordia (Bellcore)

 Warranty
Warranty Period: 2 years*
*Because of the limited lifetime of power relays, products that use that component are covered by a 2-year
warranty.
Details: See www.moxa.com/warranty

2
2. Getting Started

Type page 1 content here.

The following topics are covered in this chapter:

 I/O and Communication Module Installation

 KM-2430 DIP Switch Setting

 Installing the RTU Controller on a DIN-Rail

 ioPAC 8020-C Series

 ioLogik W5348-C Series

 Grounding the RTU Controller

 ioPAC 8020-C Series

 ioLogik W5348 Series:

 Powering on the RTU Controller

 LED Indicators

 ioPAC 8020-C Series

 ioLogik W5348-C Series

 Connecting the RTU Controller to a PC

 Serial Console

 Telnet Console

 SSH Console

 RTUAdmin Utility

 Installing RTUAdmin

 Broadcast Search

 Main Screen Overview

 Configuring the Ethernet Interface

 Modifying Network Settings via Serial Console

 Adding a Default Gateway

 Adding DNS Settings

 Developing Procedures

 Installing the Tool Chain (Linux)

 Checking the Flash Memory Space

 Compiling Hello.c

 Uploading and Running the “Hello” Program

Moxa C Programmable RTU Controllers Getting Started

 2-2

I/O and Communication Module Installation
The 5 I/O modules and single communication module may be selected for installation on the ioPAC 8020
system; all modules may be hot-swapped, allowing for convenient installation/removal at anytime.

Care should be taken before installing the modules:

1. I/O modules (RM-1050-T, RM-1602-T, RM-2600-T, RM-3802-T, and RM-3810-T) may be installed on the
ioPAC 8020-C system in any order. However, the 9th slot of the ioPAC 8020-9 series is reserved for future
expansion, so I/O modules may only be installed in slots 1 through 8.

2. If multiple kM-2430-T Ethernet communication modules are to be installed on the ioPAC 8020-C system,
the installation order must start from the last slot and continue consecutively, “downwards” (9,8,7…). Here
are some examples:

Correct Installation (module installation in steps, from right to left)

Incorrect Installation (in steps, from right to left)

Moxa C Programmable RTU Controllers Getting Started

 2-3

KM-2430 DIP Switch Setting
Single KM-2430 module in last slot (default):
DIP switch 1 2 3 4

ON/OFF ON OFF ON OFF

Multiple, cascaded KM-2430 modules:
KM-2430 module in last slot

DIP switch 1 2 3 4

ON/OFF ON OFF OFF ON

KM-2430 modules in other slots

DIP switch 1 2 3 4

ON/OFF OFF ON OFF ON

Example:
Single KM-2430 module in last slot

Multiple, cascaded KM-2430 modules:

Moxa C Programmable RTU Controllers Getting Started

 2-4

Installing the RTU Controller on a DIN-Rail

ioPAC 8020-C Series
The aluminum DIN-rail attachment plate should already be fixed to the back panel of the ioPAC 8020-C when
you take it out of the box. If you need to reattach the DIN-rail attachment plate to the ioPAC 8020-C, make sure
the spring-loaded bracket is situated towards the bottom, as shown in the following figures.

NOTE Users can purchase a wall-mounting (WK-75) kit separately.

STEP 1: If the spring-loaded bracket is locked in place, push the recessed button to release it. Once it is
released, you should feel some resistance from the spring as you slide the bracket up and down a few
millimeters in each direction.

STEP 2: Insert the top of the DIN-rail into the top slots on the DIN-rail attachment plate.

STEP 3: The DIN-rail attachment unit will snap into place as shown below.

Moxa C Programmable RTU Controllers Getting Started

 2-5

Removing ioPAC 8020-C Series from the DIN-Rail

To remove the ioPAC 8020-C from the DIN-rail, use a screwdriver to push down the spring-loaded bracket until
it locks in place, as shown in the diagram to the right. Next, rotate the bottom of the switch upwards and then
remove the switch from the DIN-rail.

ioLogik W5348-C Series
STEP 1: Insert the top of the DIN-rail into the slot just below the stiff metal spring.

STEP 2: The DIN-rail attachment unit will snap into place as shown below.

To remove the ioLogik unit from the DIN-rail, simply reverse Steps 1 and 2 above.

Moxa C Programmable RTU Controllers Getting Started

 2-6

Grounding the RTU Controller
The Moxa C programming RTU Controller is grounded to enhance EMS performance. The RTU controller comes
with a metal DIN-Rail bracket for grounding the system. For optimal EMS performance, connect the chassis
ground nut on the RTU controller to the grounding point.

ioPAC 8020-C Series

ioLogik W5348 Series:

Powering on the RTU Controller
Connect the 12 to 36 VDC power lines from the power supply to the Moxa C programming RTU controller’s
power terminal block, and then power on the power supply attached to it. It takes about 30 to 60 seconds for
the system to boot up. Once the system is ready, the Ready LED will light up.

Power Terminal Block for ioLogik W5348-C Series

Grounding Nut

Grounding Nut

Moxa C Programmable RTU Controllers Getting Started

 2-7

Power Terminal Block for ioPAC 8020-C Series

Connecting to a Serial Device

The RTU controller is equipped with two 3-in-1 serial ports that support RS-232/422/485, making it more
convenient to connect field serial devices. The pin assignment is shown below:

Pin RS-232
RS-422

4W RS-485
2W RS-485

1 DCD TxD-(A) –

2 RXD TxD+(B) –

3 TXD RxD+(B) Data+(B)

4 DTR RxD-(A) Data-(A)

5 GND GND GND

6 DSR – –

7 RTS – –

8 CTS – –

9 RI – –

NOTE After connecting the RTU controller to the power supply, it will take about 30 to 60 seconds for the operating
system to boot up. The green Ready LED will not turn on until the operating system is ready.

ATTENTION

This product is intended to be supplied by a Listed Power Unit (with output marked LPS, for Limited Power
Source) and rated for 12 to 36 VDC at 1.2A (minimum requirements). For railway rolling stock applications,
networking devices must be supplied by a galvanic isolated power supply design in compliance with the EN
50155 standard.

Moxa C Programmable RTU Controllers Getting Started

 2-8

LED Indicators

ioPAC 8020-C Series
Mark Function Description

Power Power input OFF: No system power available

Green: Power on

Serial Serial communication activity OFF: No serial communication

Green: Serial Tx/Rx

I/O Tool chain API control Green/Red/Off: Controlled by API

Ready System status Green: System ready

System status Red: System error

System status Green Flashing: System booting

Tool chain API control Green/Red/Off: After booting up, the API is able to control
this LED

Port1/2 Ethernet communication activity Off: Ethernet disconnected

Green/Flashing: Ethernet Tx/Rx

ioLogik W5348-C Series
Mark Function Description
PWR Power input OFF: No system power available

Green: Power on

LINK Tool chain API control Green/Off

READY System status Green: System ready

Off: System boot up error

Green Flashing: System booting

Tool chain API control Green/Off: After booting up, the API is able to control this
LED.

DATA Serial communication activity OFF: No serial communication

Green: Serial Tx/Rx

FAULT Tool chain API control Red/Off

SIGNAL Tool chain API control Green/Off

Connecting the RTU Controller to a PC
There are three ways to connect the Moxa C programming RTU controller to a PC: through the serial console,
Telnet/SSH console, or the RTUAdmin utility over the network.

Serial Console
The serial console gives users a convenient way of connecting to the RTU controller. This method is particularly
useful when using the computer for the first time. The serial console is also effective for connecting the RTU
controller when users do not know the target network settings and IP addresses.

To use the serial console, remove the cover from the front and top panel first, and attach the 4-pin serial
console cable to the console port.

Moxa C Programmable RTU Controllers Getting Started

 2-9

Console Port for the ioPAC 8020-C Series

Console Port for the ioLogik W5348-C Series

Pin Assignment for the Serial Console Port

No. Pin Assignments

1 Tx

2 Rx

3 N/A

4 GND

Serial Console

Baudrate 115200 bps
Parity None
Data bits 8
Stop bits: 1
Flow Control None
Terminal VT100

To connect to the RTU’s serial console, Moxa PComm Terminal Emulator is recommended to be used as the
console terminal. In the following steps, we describe how to connect the console.

STEP 1: Find the Moxa PComm Lite from the Moxa website (www.moxa.com) or Document and Software CD\
Software\utility\PComm\

STEP 2: Install the Moxa PComm Lite to the host Windows PC.

STEP 3: Run the PComm Lite Terminal Emulator from Start\Programs\PComm Lite Ver 1.x\Terminal Emulator.

Serial Console Port

http://www.moxa.com/

Moxa C Programmable RTU Controllers Getting Started

 2-10

STEP 4: Click on Profile\Open.

STEP 5: Specify the COM port that is connecting the RTU controller, and configure the settings to 115,200, 8,
none, and 1.

STEP 6: Click on the Terminal tab, and configure the Terminal Type to VT100. Click OK to proceed.

STEP 7: Serial console will be displayed on the terminal screen.

Moxa C Programmable RTU Controllers Getting Started

 2-11

Telnet Console
It will be easy to use the system embedded command “telnet” to connect the RTU controller via network
connection. The default IP address and Netmask are given below:

 Default IP Address Netmask
LAN 1 192.168.127.254 255.255.255.0

Use a cross-over Ethernet cable to connect directly from the host PC to the RTU controller. User must first
modify the host PC’s IP address and netmask to be in the same subnet as the target RTU controller. For
example, users can set the host PC’s IP address to 192.168.127.253 and netmask to 255.255.255.0 to meet
the default settings of the RTU controller.

To start the telnet console, launch the Windows Command prompt and use the following command:

To log in, type the Login name and password as requested. The default values are both root:

Login: root
Password: root

You can proceed with configuring the network settings of the target RTU controller when you reach the bash
command shell. Configuration instructions are given in the next section.

Users can perform the “logout” command to terminate the console.

ATTENTION

Serial Console Reminder
Remember to choose VT100 as the terminal type. Use the cable CBL-4PINDB9F-100, which comes with the RTU
controller, to connect to the serial console port.

Telnet Reminder
When connecting a PC to the RTU controller over a LAN, users must configure the PC’s Ethernet IP address to
be on the same subnet as the RTU controller.

For operating system that does not have “telnet” commands, such as Windows 7, intall the RTUAdmin utility
from the Document and Software CD to perform network access to the RTU Controller.

Moxa C Programmable RTU Controllers Getting Started

 2-12

SSH Console
The RTU controller supports an SSH console to provide users with better security options.

Windows Users

Click on the link http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html to download PuTTY
(free software) to set up an SSH console for the Moxa RTU in a Windows environment. The following figure
shows a simple example of the configuration that is required.

Click on “Yes” to accept the security key exchange from the RTU controller’s SSH console.

Linux Users

For a Linux-based system, users can use the “ssh” command to access the console of the RTU controller via
SSH.

#ssh 192.168.127.254

Select yes to complete the connection.

[root@bee_notebook root]# ssh 192.168.127.254

The authenticity of host ‘192.168.127.254 (192.168.127.254)’ can’t be established.

RSA key fingerprint is 8b:ee:ff:84:41:25:fc:cd:2a:f2:92:8f:cb:1f:6b:2f.

Are you sure you want to continue connection (yes/no)? yes_

NOTE SSH provides better security compared to Telnet for accessing the RTU controller’s console over the network.

RTUAdmin Utility
The Moxa C programming RTU controller can be managed and configured over the Ethernet or Cellular network
with RTUAdmin, a Windows utility provided with Moxa RTU products. RTUAdmin’s graphical user interface gives
you advanced search function to find a Moxa RTU controller in the local network, and provide easy access to the
telnet console.

Moxa C Programmable RTU Controllers Getting Started

 2-13

Installing RTUAdmin
Insert the Document and Software CD into the host computer. In the
Software\utility\RTUAdmin\RTUAdminSetup directory of the CD, locate and run SETUP.EXE. The
installation program will guide you through the installation process and install the ioAdmin utility. After the
installation is finished, run ioAdmin from the Windows Start menu.

Broadcast Search
Select the model and click the “Start Search” button to proceed.

Main Screen Overview
The main screen displays all the results of broadcast search.

1. Title 2. Menu Bar 3. Quick Link 4. Navigation Panel

5. Main Window 6. Sync. Rate Status 7. Status Bar

Title

It displays the program that is running. In this case, it is Moxa RTUAdmin.

Moxa C Programmable RTU Controllers Getting Started

 2-14

Menu Bar

The Menu bar has four items: File, System, Sort, and Help.

File
Use the File\Exit to close the RTUAdmin.

System
a. Auto Search: Searches for Moxa RTU controllers on the local network.

b. Network Interface: Selects a network interface to use the RTUAdmin.

c. Auto Search Timeout: Selects the preferred timeout value for broadcast search.

Sort
a. By Connection: Sorts by the target Moxa RTU controller’s IP address.

b. By Server: Sorts by the target Moxa RTU controller’s model name.

Help
Displays the software information of the RTUAdmin.

Quick Link

Icon Function

Auto Search

Sort by Connection

Sort by Server

Navigation Panel

Lists the current search result.

Main Window

Displays the detailed information about the Moxa RTU controllers that are found. Click on the specific product
in the Navigation Panel, the Main Window will connects to its telnet console automatically.

Moxa C Programmable RTU Controllers Getting Started

 2-15

Sync Rate Status

Indicates the period that RTUAdmin has been launched.

Status Bar

Displays the current time.

Configuring the Ethernet Interface
The network settings of the Moxa C programming RTU controller can be modified with the serial console port,
or online over the network.

Modifying Network Settings via Serial Console
Follow the instructions given in the previous section to access the serial console of the target RTU controller,
and then type #cd /etc/network to change directories.

Type #vi interfaces to edit the network configuration file with vi editor. Users can configure the Ethernet ports
of the RTU controller for static or dynamic (DHCP) IP addresses.

Static IP addresses

As shown in the table below, 4 network addresses must be modified: address, network, netmask, and
broadcast. The default IP address for LAN1 is 192.168.127.254, with default netmask of 255.255.255.0.

Dynamic IP addresses

By default, the RTU controller is configured for “static” IP addresses. To configure the LAN port to request an
IP address dynamically, replace static with dhcp and then delete the address, network, netmask, and
broadcast lines.

Default Setting for LAN1 Dynamic Setting using DHCP

iface eth0 inet static
address 192.168.127.254
network: 192.168.127.0
netmask 255.255.255.0
broadcast 192.168.127.255

iface eth0 inet dhcp

After the LAN interface settings have been modified and saved, perform the following command to activate the
LAN settings immediately:

Moxa C Programmable RTU Controllers Getting Started

 2-16

#/etc/init.d/networking restart

NOTE After changing the IP settings, use the networking restart command to activate the new IP address.
Users must modify the /etc/network/interfaces to store the new settings. Using commands such as
#ifconfig eth0 192.168.1.1 WILL NOT save the settings to the flash memory.

Adding a Default Gateway
Follow the instructions given in a previous section to access the serial console of the target Moxa RTU Controller,
and then type #cd /etc/network to change directories.

1. Type #vi interfaces to edit the network configuration file with vi editor.

2. Add the gateway IP to the last entry of the interface settings.

After the LAN interface settings have been modified and saved, perform the following command to activate the
LAN settings immediately:

#/etc/init.d/networking restart

Adding DNS Settings
For details, refer to Chapter 4, Managing Communications .

Developing Procedures
In general, program development involves the following seven steps.

Step 1:
Connect the RTU controller to a Linux PC.
Step 2:
Install Tool Chain (GNU Cross Compiler & glibc) from the Document and
Software CD.
Step 3:
Set the cross compiler and glibc environment variables.
Step 4:
Code and compile the program.
Step 5:
Download the program to the target RTU controller using FTP or NFS.
Step 6:
Debug the program
 If bugs are found, return to Step 4.
 If no bugs are found, continue with Step 7.
Step 7:
Back up the user directory (distribute the program to additional Moxa
RTU controller if needed).

Moxa C Programmable RTU Controllers Getting Started

 2-17

Installing the Tool Chain (Linux)
The Linux Operating System must be pre-installed in the host PC before installing the RTU controller’s GNU Tool
Chain. Fedora Core or compatible versions are recommended. The Tool Chain requires approximately 150 MB
of hard disk space on your PC. The RTU controller’s Tool Chain software is located on the attached Document
and Software CD. To install the Tool Chain, insert the CD into your PC and then issue the following commands:

#mount/dev/cdrom /mnt/cdrom
#sh /mnt/cdrom/Software/toolchain/arm-linux_3.3.2_V1.X_BuildXXXXXXXX.sh

(ioPAC 8020 & ioLogik W5348 V1.4->

#sh /mnt/cdrom/Software/toolchain/arm-linux_V1.X_BuildXXXXXXXX.sh)

The Tool Chain will be installed automatically on the host Linux PC within a few minutes. Before compiling the
program, be sure to set the following path first, since the Tool Chain files (including the compiler, link, and
library) are located in this directory.

PATH=/usr/local/arm-linux/bin:$PATH

Setting the path allows you to run the compiler from any directory.

Checking the Flash Memory Space
If the flash memory is full, you will not be able to save data to the Flash ROM. Use the following command to
calculate the amount of “Available” flash memory:

/>df –h

If there isn’t enough “Available” space for user’s program, users must delete some existing files. To do this,
connect the host PC to the RTU controller with the console cable, and then use the console utility to remove the
none-using files from the flash memory. To check the amount of available space, look at the directories in the
read/write directory /dev/mtdblock3. Note that the directories /home and /etc are both mounted on the
directory /dev/mtdblock3.

NOTE If the flash memory is full, users must release some memory space before saving files to the Flash ROM.

Compiling Hello.c
The Software and Document CD contains an example Hello.c program allowing users to run pilot tests to the
RTU controller. Type the following commands from the host PC to copy the files used for this example.

cd /tmp/
mkdir example
cp –r /mnt/cdrom/example/hello/* /tmp/example

To compile the program, go to the Hello subdirectory and issue the following commands:

cd example/hello
make

Users should see the following response:

Moxa C Programmable RTU Controllers Getting Started

 2-18

[root@localhost hello]# make

/usr/local/arm-linux/bin/arm-linux-gcc –o hello-release hello.c

/usr/local/arm-linux/bin/arm-linux-strip –s hello-release

/usr/local/arm-linux/bin/arm-linux-gcc –ggdb -o hello-debug hello.c

[root@localhost hello]# _

The hello-release and hello-debug are described as below:

hello-release—An ARM platform executable file (created specifically to run on the Moxa RTU Controllers)

hello-debug—An ARM platform GDB debug server execution file (see Chapter 5 for details)

NOTE Since the Moxa’s tool chain places a specially designed Makefile in the directory /tmp/example/ hello, be
sure to type the #make command from within that directory. If users type the #make command from any
other directory, the host Linux PC may use other system compilers (for example, cc or gcc) and resulting
errors.

Uploading and Running the “Hello” Program
1. Use the following commands to upload hello-release to the RTU controller by FTP.

From the PC, type:
#ftp 192.168.127.254

2. Use the bin command to set the transfer mode to Binary mode, and then use the put command to initiate
the file transfer:

ftp> bin
ftp> cd /home
ftp> put hello-release

3. From the Moxa RTU, type:

chmod +x hello-release
./hello-release

The word Hello will be printed on the screen.

root@Moxa:~# ./hello-release

Hello

To run the program automatically after system starts, modify the rc.local file at /etc/rc.d as follows,

Modify the /home/autoexec.sh will also be OK.

3
3. Managing the RTU Controllers

This chapter includes information for version control, deployment, updates, and peripherals. The information in
this chapter will be useful when users need to run the same application on several Moxa RTU controllers.

The following topics are covered in this chapter:

 System Version Information

 Firmware Upgrade and Default Settings

 Upgrading the Firmware

 Loading Factory Defaults

 Enabling and Disabling Daemons

 Setting the Run-Level

 Adjusting the System Time

 Setting the Time Manually

 Updating the Time with NTP Client

 Updating the Time Automatically

 Executing Scheduled Commands with Cron Daemon

Moxa C Programmable RTU Controllers Managing the RTU Controllers

 3-2

System Version Information
To verify the hardware capability of the target RTU controller, and the supported software, check the version
numbers of your Moxa RTU controller’s hardware, kernel, and user file system. Contact Moxa to verify the
hardware version. You will need the Production S/N (Serial number), which is labeled on the RTU controller’s
bottom.

To check the kernel version, type:

#kversion -a

NOTE The kernel version number is for factory default configuration. You may download the latest firmware version
from Moxa’s website and then upgrade the RTU controller’s hardware.

Firmware Upgrade and Default Settings

Upgrading the Firmware
The Moxa RTU controller’s kernel and root file system are combined into one firmware file, which can be found
in the Software and Document CD or be downloaded from Moxa’s website (www.moxa.com). The name of the
file has the form xxxx.hfm. To upgrade the firmware, the firmware file should be placed in the target RTU
controller’s Ramdisu, using SD card or FTP.

ATTENTION

Upgrading the firmware will erase all data on the Flash ROM
Firmware upgrade requires the RTU controller’s RAM disk. If the application data is stored in the RAM disk, back
up or remove the data before upgrading the firmware.

Since different Flash disks have different sizes, it is recommended to check the size of the current Flash disk
before upgrading the firmware. You can do so by using the #df –h command to list the size of each memory
block and see how much free space is available in each block.

Follow the steps to transfer the firmware file to the RTU controller’s RAM disk, and to upgrade the firmware.

1. Type the following commands to enable the RAM disk:

#upramdisk
#cd /mnt/ramdisk

2. Activate the PC’s FTP server, and put the firmware file to the FTP folder.

Moxa C Programmable RTU Controllers Managing the RTU Controllers

 3-3

3. In Moxa RTU Controller’s console, perform the following commands to use the built-in FTP client to retrieve
the firmware file (xxxx.hfm) from the host PC to the RTU controller:

/mnt/ramdisk# ftp <remote FTP Server’s IP>
Login Name: xxxx
Login Password: xxxx
ftp> bin
ftp> get xxxx.hfm

4. After the firmware file is transferred to the RAM disk, perform upgradehfm command to upgrade the
kernel and root file system.

#upgradehfm xxxx.hfm
Press “Y” to complete the upgrade.

ATTENTION

The upfirm utility will reboot your target RTU controller after the upgrade is done.

Loading Factory Defaults
To load the factory default settings, press and hold the RESET button for more than 5 seconds. All files in the
/home &/etc directory will be removed.

Enabling and Disabling Daemons
The following daemons are enabled when the RTU controller is boot up.

telnetd Telnet Server / Client daemon
inetd Internet Daemons
ftpd FTP Server / Client daemon
sshd Secure Shell Server daemon

Moxa C Programmable RTU Controllers Managing the RTU Controllers

 3-4

Perform the command “ps -ef” to list all the running processes.

To run a private daemon, users need to edit the file rc.local, as follows:

#cd /etc/rc.d
#vi rc.local

 192.168.127.254 - PuTTY

 root@Moxa:~# cd /etc/rc.d

root@Moxa:~# /etc/rc.d# vi rc.local

The following diagram shows how to edit the last line of the rc.local to activate the complied example
“tcps2-release”, and run in the background.

 192.168.127.254 - PuTTY

 # !/bin/sh

if [-f /home/autoexec.sh]; then

/home/autoexec.sh

fi

Add the new daemons or programs starting from the next line

/home/tcps2-release &~

The enabled daemons will be available after rebooting the RTU controller.

An alternative is the autoexec.sh located in the /home directory to wake up and activate those daemons and
programs. By editing and updating it to the RTU controller system, users will no longer need to modify the
rc.loca file.

Setting the Run-Level
Perform the following commands to add or delete the settings, such as system service or programs, to the run
levels.

#cd /etc/rc.d/init.d
If there is a program tcps2 at /home, link it to the run level,

#cd /etc/rc.d/rc3.d
#ln –s /home/tcps2 S60tcps2

SxxRUNFILE stands for

S:Starts the run file while linux boots up.

xx: A number between 00-99. Smaller numbers have higher priority.

RUNFILE: The file name.

 192.168.127.254 - PuTTY

 root@Moxa:/ect/rc.d/rc3.d# ls

S19nfs-common S25nfs-user-server S99showreadyled

S20snmpd S55ssh

S24pcmcia S99rmnologin

root@Moxa:/ect/rc.d/rc3.d# ln –s /home/tcps2 S60tcps2

root@Moxa:/ect/rc.d/rc3.d# ls

S19nfs-common S25nfs-user-server S99rmnologin

S20snmpd S55ssh S99showreadyled

S24pcmcia S60tcps2

root@Moxa:/etc/rc.d/rc3.d#

Remove the link by performing the following command:

#rm –f /etc/rc.d/rc3.d/S60tcps2

Moxa C Programmable RTU Controllers Managing the RTU Controllers

 3-5

Adjusting the System Time

Setting the Time Manually
The Moxa C programming RTU controller has two time settings. One is the system time, and the other is the
RTC (Real Time Clock) time kept by the RTU controller’s hardware. Use the #date command to query the
current system time or set a new system time. Use #hwclock to query the current RTC time or set a new RTC
time.

Use the following command to query the system time:

#date

Use the following command to query the RTC time:

#hwclock

Use the following command to set the system time:

#date MMDDhhmmYYYY

MM = Month

DD = Date

hhmm = hour and minute

YYYY = Year

Use the following command to set the RTC time:

#hwclock –w

Write current system time to RTC.

The following figure illustrates how to update the system time and set the RTC time.

 192.168.127.254 – PuTTY

 root@Moxa:~# date

Fri Jun 23 23:30:31 CST 2000

root@Moxa:~# hwclock

Fri Jun 23 23:30:35 2000 -0.557748 seconds

root@Moxa:~# date 120910002010

Thu Dec 9 10:00:00 CST 2010

root@Moxa:~# hwclock –w

root@Moxa:~# date ; hwclock

Thu Dec 9 10:01:07 CST 2010

Thu Dec 9 10:01:08 2010 -0.933547 seconds

root@Moxa:~#

Moxa C Programmable RTU Controllers Managing the RTU Controllers

 3-6

Updating the Time with NTP Client
The Moxa C programming RTU controller has a built-in NTP (Network Time Protocol) client that is used to
initialize a time request to a remote NTP server. Use #ntpdate <Time Server> to update the system time,
and save it to the RTC.

#ntpdate time.stdtime.gov.tw

#hwclock –w

Visit http://www.ntp.org for more information about NTP and NTP server addresses.

 10.120.53.100 - PuTTY

 root@Moxa:~# date ; hwclock

Sat Jan 1 00:00:36 CST 2000

Sat Jan 1 00:00:37 2000 -0.772941 seconds

root@Moxa:~# ntpdate time.stdtion.gov.tw

 9 Dec 10:58:53 ntpdate[207]: step time server 220.130.158.52 offset 155905087.984256

sec

root@Moxa:~# hwclock –w

root@Moxa:~# date ; hwclock

Thu Dec 9 10:59:11 CST 2010

Thu Dec 9 10:59:12 2010 -0.844076 seconds

root@Moxa:~#

NOTE Before using the NTP client utility, check the IP and DNS settings of the target RTU controller to make sure that
an Internet connection is available. Refer to Chapter 2 for instructions on how to configure the Ethernet
interface, and see Chapter 4 for DNS setting information.

Updating the Time Automatically
In this section, it shows how to use a shell script to update the time automatically.

How to update the system time periodically

#!/bin/sh
ntpdate time.nist.gov
You can use the time server’s ip address or domain
name directly. If you use domain name, you must
enable the domain client on the system by updating
/etc/resolv.conf file.
hwclock –-systohc
sleep 100
Updates every 100 seconds. The min. time is 100 seconds. Change
100 to a larger number to update RTC less often.
Save the shell script using any file name. E.g., fixtime.

How to update the time automatically when the kernel boots up

Copy the example shell script fixtime to directory /etc/init.d, and then perform the command #chmod 755
fixtime to change the shell script mode. Next, use vi editor to edit the file /etc/inittab. Add the following line
to the bottom of the file:

ntp : 2345 : respawn : /etc/init.d/fixtime

Perform the command #init q to re-init the kernel.

Moxa C Programmable RTU Controllers Managing the RTU Controllers

 3-7

Executing Scheduled Commands with Cron
Daemon

Start Cron from the directory /etc/rc.d/rc. local. It will return immediately without adding a ‘&’ to run in the
background.

The Cron daemon will search /etc/cron.d/crontab for crontab files, which are named after accounts in
/etc/passwd.

Cron wakes up every minute, and checks each command to see if it should be run in that minute. Modify the file
/etc/cron.d/crontab to set up the scheduled applications. Crontab files are in the following formats:

mm h dom mon dow user command

min hour date month week user command

0-59 0-23 1-31 1-12 0-6 (0 is Sunday)

The following example demonstrates how to use Cron.

How to use Cron to update the system time and RTC time every day at 8:00.

STEP1: Write a shell script named fixtime.sh and save it to /home/.
#!/bin/sh
ntpdate time.nist.gov
hwclock –-systohc
exit 0

STEP2: Change mode of fixtime.sh
#chmod 755 fixtime.sh

STEP3: Modify /etc/cron.d/crontab file to run fixtime.sh at 8:00 every day.
Add the following line to the end of crontab:
* 8 * * * root/homefixtime.sh

STEP4: Enable the cron daemon manually.
#/etc/init.d/cron start

STEP5: Enable Cron when the system boots up.
Add the following line in the file /etc/init.d/rc.local.
#/etc/init.d/cron start

4
4. Managing Communications

In this chapter, it explains how to configure the RTU controller’s communication functions.

The following topics are covered in this chapter:

 Telnet/FTP

 Enabling the Telnet/FTP Server

 Disabling the Telnet/FTP Server

 DNS

 IPTABLES

 Observe and Erase Chain Rules

 Define Policy for Chain Rules

 Append or Delete Rules

 NAT

 NAT Example

 Enabling NAT at Bootup

 Dial-up Service—PPP

 PPPoE

 PPP over Cellular

 NFS (Network File System)

 Setting up the RTU Controller as an NFS Client

 Mail

 OpenVPN

Moxa C Programmable RTU Controllers Managing Communications

 4-2

Telnet/FTP
The Telnet and FTP Server service is enabled by default on the RTU controller. To enable or disable the
Telnet/ftp server, users need to edit the file /etc/inetd.conf.

Enabling the Telnet/FTP Server
The following example shows the default content of the file /etc/inetd.conf.

telnet stream tcp nowait root /bin/telnetd
ftp stream tcp nowait root /bin/ftpd -l

Disabling the Telnet/FTP Server
Disable the daemon by typing ‘#’ in front of the first character of the row to comment out the line.

DNS
To set up DNS client for the RTU controller, users need to edit three configuration files: /etc/hosts,
/etc/resolv.conf, and /etc/nsswitch.conf.

/etc/hosts

The hosts is the first file that the RTU controller system reads to resolve the host name of the remote IP
address.

/etc/resolv.conf

The resolv.conf contains the remote DNS server’s address in it. Ask the network administrator or service
provider which DNS server address should be configured to this file. The DNS server’s IP address is specified
with the “nameserver” command. For example, add the following line to /etc/resolv.conf if the DNS server’s IP
address is 168.95.1.1:

nameserver 168.95.1.1

 10.120.53.100 - PuTTY

 root@Moxa:/etc# cat resolv.conf

resolv.conf This file is the resolver configuration file

See resolver(5).

#nameserver 192.168.1.16

nameserver 168.95.1.1

nameserver 140.115.1.31

nameserver 140.115.236.10

root@Moxa:/etc#

/etc/nsswitch.conf

This file defines the sequence to resolve the IP address by using /etc/hosts file or /etc/resolv.conf.

Moxa C Programmable RTU Controllers Managing Communications

 4-3

IPTABLES
IPTABLES is an administrative tool for setting up, maintaining, and inspecting the RTU controller’s IP packet
filter rule tables. Several different tables are defined, with each table containing built-in chains and
user-defined chains.

Each chain is a list of rules that apply to a specific type of packet. Each rule specifies what to do with a matching
packet. A rule (such as a jump to a user-defined chain in the same table) is called a “target.”

The Moxa C programming RTU controller supports 3 types of IPTABLES table: Filter tables, NAT tables, and
Mangle tables:

A. Filter Table—includes three chains:

INPUT chain

OUTPUT chain

FORWARD chain

B. NAT Table—includes three chains:

PREROUTING chain—transfers the destination IP address (DNAT)

POSTROUTING chain—works after the routing process and before the Ethernet device process to transfer
the source IP address (SNAT)

OUTPUT chain—produces local packets

sub-tables

Source NAT (SNAT)—changes the first source packet IP address
Destination NAT (DNAT)—changes the first destination packet IP address
MASQUERADE—a special form for SNAT. If one host can connect to Internet, then other computers that
connect to this host can connect to the Internet when the computer does not have an actual IP address.
REDIRECT—a special form of DNAT that re-sends packets to a local host independent of the destination IP
address.

C. Mangle Table—includes two chains

PREROUTING chain—pre-processes packets before the routing process.

OUTPUT chain—processes packets after the routing process.

It has three extensions—TTL, MARK, TOS.

Moxa C Programmable RTU Controllers Managing Communications

 4-4

The following figure shows the IPTABLES hierarchy.

The Moxa C programming RTU controller supports the following sub-modules. Be sure to use the module that
matches the real application.

ip_conntrack ipt_MARK ipt_ah ipt_state

ip_conntrack_ftp ipt_MASQUERADE ipt_esp ipt_tcpmss

ipt_conntrack_irc ipt_MIRROT ipt_length ipt_tos

ip_nat_ftp ipt_REDIRECT ipt_limit ipt_ttl

ip_nat_irc ipt_REJECT ipt_mac ipt_unclean

ip_nat_snmp_basic ipt_TCPMSS ipt_mark

ip_queue ipt_TOS ipt_multiport

ipt_LOG ipt_ULOG ipt_owner

NOTE The Moxa C programming RTU controller Do NOT support IPV6 and ipchains.

The basic syntax to enable and load an IPTABLES module is as follows:

#lsmod
#modprobe ip_tables
#modprobe iptable_filter

Moxa C Programmable RTU Controllers Managing Communications

 4-5

Use the lsmod command to check if the ip_tables module has already been loaded in the Moxa RTU unit. Use
the modprobe command to insert and enable the module.

Use the following command to load the modules (iptable_filter, iptable_mangle, iptable_nat):

#modprobe iptable_filter

NOTE IPTABLES plays the role of packet filtering or NAT. Be careful when setting up the IPTABLES rules. If the rules
are not correct, remote hosts that are connected via a LAN or PPP may deny access. It is strongly recommended
to use the serial console to set up the IPTABLES.
Click on the following links for more information about iptables.
http://www.linuxguruz.com/iptables/
http://www.netfilter.org/documentation/HOWTO//packet-filtering-HOWTO.html

Since the IPTABLES command is very complex, illustrating the IPTABLES syntax is divided into three categories:
Observe and erase chain rules, Define policy rules, and Append or delete rules.

Observe and Erase Chain Rules

Usage:

iptables [-t tables] [-L] [-n]

-t tables: Table to manipulate (default: ‘filter’); example: nat or filter.

-L [chain]: List List all rules in selected chains. If no chain is selected, all chains are listed.

-n: Numeric output of addresses and ports.

iptables [-t tables] [-FXZ]

-F: Flush the selected chain (all the chains in the table if none is listed).

-X: Delete the specified user-defined chain.

-Z: Set the packet and byte counters in all chains to zero.

Examples:
iptables -L -n

In this example, since we do not use the -t parameter, the system uses the default ‘filter’ table. Three chains
are included: INPUT, OUTPUT, and FORWARD. INPUT chains are accepted automatically, and all connections
are accepted without being filtered.

#iptables –F
#iptables –X
#iptables –Z

Define Policy for Chain Rules

Usage:
iptables [-t tables] [-P] [INPUT, OUTPUT, FORWARD, PREROUTING, OUTPUT, POSTROUTING]
[ACCEPT, DROP]

-P: Set the policy for the chain to the given target.

INPUT: For packets coming into the Moxa RTU.
OUTPUT: For locally-generated packets.

FORWARD: For packets routed out through the Moxa RTU.

PREROUTING: To alter packets as soon as they come in.

POSTROUTING: To alter packets as they are about to be sent out.

Moxa C Programmable RTU Controllers Managing Communications

 4-6

Examples:
#iptables –P INPUT DROP
#iptables –P OUTPUT ACCEPT
#iptables –P FORWARD ACCEPT
#iptables –t nat –P PREROUTING ACCEPT
#iptables –t nat –P OUTPUT ACCEPT
#iptables -t nat –P POSTROUTING ACCEPT

In this example, the policy accepts outgoing packets and denies incoming packets.

Append or Delete Rules

Usage:
iptables [-t table] [-AI] [INPUT, OUTPUT, FORWARD] [-io interface] [-p tcp, udp, icmp, all] [-s
IP/network] [--sport ports] [-d IP/network] [--dport ports] –j [ACCEPT. DROP]

-A: Append one or more rules to the end of the selected chain.

-I: Insert one or more rules in the selected chain as the given rule number.

-i: Name of an interface via which a packet is going to be received.

-o: Name of an interface via which a packet is going to be sent.

-p: The protocol of the rule or of the packet to check.

-s: Source address (network name, host name, network IP address, or plain IP address).

--sport: Source port number.

-d: Destination address.

--dport: Destination port number.

-j: Jump target. Specifies the target of the rules; i.e., how to handle matched packets. For
example, ACCEPT the packet, DROP the packet, or LOG the packet.

Examples:
Example 1: Accept all packets from lo interface.

iptables –A INPUT –i lo –j ACCEPT

Example 2: Accept TCP packets from 192.168.0.1.

iptables –A INPUT –i eth0 –p tcp –s 192.168.0.1 –j ACCEPT

Example 3: Accept TCP packets from Class C network 192.168.1.0/24.

iptables –A INPUT –i eth0 –p tcp –s 192.168.1.0/24 –j ACCEPT

Example 4: Drop TCP packets from 192.168.1.25.

iptables –A INPUT –i eth0 –p tcp –s 192.168.1.25 –j DROP

Example 5: Drop TCP packets addressed for port 21.

iptables –A INPUT –i eth0 –p tcp --dport 21 –j DROP

Example 6: Accept TCP packets from 192.168.0.24 to Moxa RTU’s port 137, 138, 139

iptables –A INPUT –i eth0 –p tcp –s 192.168.0.24 --dport 137:139 –j ACCEPT

Example 7: Drop all packets from MAC address 01:02:03:04:05:06.

iptables –A INPUT –i eth0 –p all –m mac -–mac-source 01:02:03:04:05:06 –j DROP

NOTE: In Example 7, remember to issue the command #modprobe ipt_mac first to load module ipt_mac.

Moxa C Programmable RTU Controllers Managing Communications

 4-7

NAT
NAT (Network Address Translation) protocol translates IP addresses used on one network to different IP
addresses used on another network. One network is designated the inside network and the other is the outside
network. Typically, the RTU controller connects several devices on a network, maps local inside network
addresses to one or more global outside IP addresses, and un-maps the global IP addresses on incoming
packets back into local IP addresses.

NOTE Click on the following links for more information about iptables and NAT:
http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO.html

NAT Example
The IP address of LAN1 is changed to 192.168.127.254 (you will need to load the module ipt_MASQUERADE):

1. #echo 1 > /proc/sys/net/ipv4/ip_forward

2. #modprobe ip_tables

3. #modprobe iptable_filter

4. #modprobe ip_conntrack

5. #modprobe iptable_nat

6. #modprobe ipt_MASQUERADE

7. #iptables -t nat -A POSTROUTING -o eth0 -j SNAT --to-source 192.168.127.254

8. #iptables -t nat -A POSTROUTING -o eth0 -s 192.168.127.0/24 -j MASQUERADE

Enabling NAT at Bootup
In most of the situations, you will want to use a simple shell script to enable NAT when the RTU controller boots
up. The following script is an example.

#!/bin/bash
If you put this shell script in the /home/nat.sh
Remember to chmod 744 /home/nat.sh
Edit the rc.local file to make this shell startup automatically.
vi /etc/rc.d/rc.local
Add a line in the end of rc.local /home/nat.sh

http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO.html

Moxa C Programmable RTU Controllers Managing Communications

 4-8

EXIF=‘eth0’ # This is an external interface for setting up a valid IP address.
EXNET=‘192.168.4.0/24’ #This is an internal network address.
Step 1. Insert modules.
Here 2> /dev/null means the standard error messages will be dump to null device.
modprobe ip_tables 2> /dev/null
modprobe ip_conntrack 2> /dev/null
modprobe ip_conntrack_ftp 2> /dev/null
modprobe ip_conntrack_irc 2> /dev/null
modprobe iptable_nat 2> /dev/null
modprobe ip_nat_ftp 2> /dev/null
modprobe ip_nat_irc 2> /dev/null
Step 2. Define variables, enable routing and erase default rules.
PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin
export PATH
echo “1” > /proc/sys/net/ipv4/ip_forward
/bin/iptables -F
/bin/iptables -X
/bin/iptables -Z
/bin/iptables -F -t nat
/bin/iptables -X -t nat
/bin/iptables -Z -t nat
/bin/iptables -P INPUT ACCEPT
/bin/iptables -P OUTPUT ACCEPT
/bin/iptables -P FORWARD ACCEPT
/bin/iptables -t nat -P PREROUTING ACCEPT
/bin/iptables -t nat -P POSTROUTING ACCEPT
/bin/iptables -t nat -P OUTPUT ACCEPT
Step 3. Enable IP masquerade.

Dial-up Service—PPP
PPP (Point to Point Protocol) is used to run IP (Internet Protocol) and other network protocols over serial
connection. PPP can be used for direct serial connections (using a null-modem cable) over a Telnet link, and for
links established using a modem over a telephone line.

Modem and PPP access is almost identical through the RTU controller’s Ethernet port. Since PPP is a
peer-to-peer system, the RTU controller can also use PPP to link two networks (or a local network to the
Internet) to create a Wide Area Network (WAN).

NOTE Click on the following links for more information about ppp:
http://tldp.org/HOWTO/PPP-HOWTO/index.html
http://axion.physics.ubc.ca/ppp-linux.html

The pppd daemon is used to connect to a PPP server from a Linux system. For detailed information about pppd
see the man page.

Example 1: Connecting to a PPP Server over a Simple Dial-up

Connection

The following command is used to connect to a PPP server by modem. Use this command for old ppp servers
that prompt for a login name and password. Note that debug and default route 192.1.1.17 are optional.

#pppd connect ‘chat -v “ “ ATDT5551212 CONNECT “ “ ogin: username word: password’
/dev/ttyM0 115200 debug crtscts modem defaultroute

http://tldp.org/HOWTO/PPP-HOWTO/index.html
http://axion.physics.ubc.ca/ppp-linux.html

Moxa C Programmable RTU Controllers Managing Communications

 4-9

If the PPP server does not prompt for the username and password, the command should be entered as follows.
Replace username with the correct username and replace password with the correct password.

#pppd connect ‘chat -v “ “ ATDT5551212 CONNECT “ “‘user username password /dev/ttyM0
115200 crtscts modem

The pppd options are described below:

connect ‘chat etc...’

This option gives the command to contact the PPP server. The ‘chat’ program is used to dial a remote computer.
The entire command is enclosed in single quotes because pppd expects a one-word argument for the ‘connect’
option. The options for ‘chat’ are given below:

-v

verbose mode; log what we do to syslog

“ “

Double quotes—don’t wait for a prompt, but instead do ... (note that you must add a space after the second
quotation mark)

ATDT5551212

Dial the modem, and then ...

CONNECT

Wait for an answer.

“ “

Send a return (null text followed by the usual return)

login: username word: password

Log in with the username and password.

Refer to the chat man page, chat.8, for more information about the chat utility.

/dev/

Specify the callout serial port.

115200

The baudrate.

debug

Log status in syslog.

crtscts

Use hardware flow control between computer and modem (at 115200 this is a must).

modem

Indicates that this is a modem device; pppd will hang up the phone before and after making the call.

defaultroute

Once the PPP link is established, make it the default route; if you have a PPP link to the Internet, this is probably
what you want.

192.1.1.17

This is a degenerate case of a general option of the form x.x.x.x:y.y.y.y. Here x.x.x.x is the local IP address and
y.y.y.y is the IP address of the remote end of the PPP connection. If this option is not specified, or if just one
side is specified, then x.x.x.x defaults to the IP address associated with the local machine’s hostname (located
in /etc/hosts), and y.y.y.y is determined by the remote machine.

Moxa C Programmable RTU Controllers Managing Communications

 4-10

Example 2: Connecting to a PPP Server over a Hard-wired Link

If a username and password are not required, use the following command (note that noipdefault is optional):

#pppd connect ‘chat –v “ “ “ “ ‘ noipdefault /dev/ttyM0 19200 crtscts “

If a username and password are required, use the following command (note that noipdefault is optional, and
both the username and password are root):

#pppd connect ‘chat –v “ “ “ “ ‘ user root password root noipdefault
/dev/ttyM0 19200 crtscts

How to Check the Connection

Once a PPP connection is set up, you can follow the steps to test the connection. First, type:

/sbin/ifconfig

You should be able to see all the network interfaces that are UP. Check “ppp0” interface, and you should
recognize the first IP address as your own, and the “P-t-P address” (or point-to-point address) the address of
your server. Here’s what it looks like on the RTU controller:

lo Link encap Local Loopback
inet addr 127.0.0.1 Bcast 127.255.255.255 Mask 255.0.0.0
UP LOOPBACK RUNNING MTU 2000 Metric 1
RX packets 0 errors 0 dropped 0 overrun 0

ppp0 Link encap Point-to-Point Protocol
inet addr 192.76.32.3 P-t-P 129.67.1.165 Mask 255.255.255.0
UP POINTOPOINT RUNNING MTU 1500 Metric 1
RX packets 33 errors 0 dropped 0 overrun 0
TX packets 42 errors 0 dropped 0 overrun 0

Now, type:

ping z.z.z.z

where z.z.z.z is the address of your name server. The response may look like:

waddington:~$p ping 129.67.1.165
PING 129.67.1.165 (129.67.1.165): 56 data bytes
64 bytes from 129.67.1.165: icmp_seq=0 ttl=225 time=268 ms
64 bytes from 129.67.1.165: icmp_seq=1 ttl=225 time=247 ms
64 bytes from 129.67.1.165: icmp_seq=2 ttl=225 time=266 ms
^C
--- 129.67.1.165 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 247/260/268 ms
waddington:~$

Try typing:

netstat –nr

It should show three routes, similar as the following:

Kernel routing table

Destination iface Gateway Genmask Flags Metric Ref Use
129.67.1.165 ppp0 0.0.0.0 255.255.255.255 UH 0 0 6

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

0.0.0.0 ppp0 129.67.1.165 0.0.0.0 UG 0 0 6298

Moxa C Programmable RTU Controllers Managing Communications

 4-11

If your output looks similar but doesn’t have the destination 0.0.0.0 line (which refers to the default route used
for connections), you may have run pppd without the ‘defaultroute’ option. At this point you can try using
Telnet, ftp, or finger, bearing in mind that you’ll have to use numeric IP addresses unless you’ve set up
/etc/resolv.conf correctly.

Setting up a Machine for Incoming PPP Connections

This first example applies to using a modem, and requiring authorization with a username and password.

pppd/dev/ttyM0 115200 crtscts modem 192.168.16.1:192.168.16.2 login auth

You should also add the following line to the file /etc/ppp/pap-secrets:

* * ““ *

The first star (*) lets everyone login. The second star (*) lets every host connect. The pair of double quotation
marks (““) is to use the file /etc/passwd to check the password. The last star (*) is to let any IP connect.

The following example does not check the username and password:

pppd/dev/ttyM0 115200 crtscts modem 192.168.16.1:192.168.16.2

PPPoE
1. Connect the RTU controller’s LAN port to an ADSL modem with a cross-over cable, HUB, or switch.

2. Log in to the RTU controller as the root user.

3. Edit the file /etc/ppp/chap-secrets and add the following:

“username@hinet.net”*“password”*

“username@hinet.net” is the username obtained from the ISP to log in to the ISP account. “password”
is the corresponding password for the account.

4. Edit the file /etc/ppp/pap-secrets and add the following:

“username@hinet.net”*“password”*

“username@hinet.net” is the username obtained from the ISP to log in to the ISP account.
“password” is the corresponding password for the account.

Moxa C Programmable RTU Controllers Managing Communications

 4-12

5. Edit the file /etc/ppp/options and add the following line:

plugin pppoe

6. Add one of the two files: /etc/ppp/options.eth0. The choice depends on which LAN is connected to the
ADSL modem. If you use LAN1 to connect to the ADSL modem, then add /etc/ppp/options.eth0. The file
context is shown below:

Type your username (the one you set in the /etc/ppp/pap-secrets and /etc/ppp/chap-secrets files)
after the “name” option. You may add other options as desired.

7. Set up DNS

If you are using DNS servers supplied by your ISP, edit the file
/etc/resolv.conf by adding the following lines of code:
nameserver ip_addr_of_first_dns_server
nameserver ip_addr_of_second_dns_server
For example:
nameserver 168.95.1.1
nameserver 139.175.10.20

8. Use the following command to create a pppoe connection:

pppd eth0
The eth0 is what is connected to the ADSL modem LAN port. The example above uses LAN1.

9. Type ifconfig ppp0 to check if the connection is OK or has failed. If the connection is OK, you will see
information about the ppp0 setting for the IP address. Use ping to test the IP.

10. If you want to disconnect it, use the kill command to kill the pppd process.

PPP over Cellular
It is recommend to use the callular API in the RTU controller’s Toolchain; however, the pppd also supports
cellular network with following examples,

Create a chat configuration “cellular-cmd” at /etc/ppp/peers

Moxa C Programmable RTU Controllers Managing Communications

 4-13

Create a pppd configuration “cellular-connect” at /etc/ppp/peers

Perform the command

#pppd call cellular-connect

NFS (Network File System)
The Network File System (NFS) is used to mount a disk partition on a remote machine, as if it were on a local
hard drive, allowing fast, seamless sharing of files across a network. NFS allows users to develop applications
for the Moxa C programming RTU controller, without worrying about the amount of disk space that will be
available. The Moxa RTU controller supports NFS protocol for client.

NOTE Click on the following links for more information about NFS:
http://www.tldp.org/HOWTO/NFS-HOWTO/index.html
http://nfs.sourceforge.net/nfs-howto/client.html
http://nfs.sourceforge.net/nfs-howto/server.html

Setting up the RTU Controller as an NFS Client
The following procedure is used to mount a remote NFS Server.

1. To know the NFS Server’s shared directory.

2. Establish a mount point on the NFS Client site.

3. Mount the remote directory to a local directory.

#mkdir –p /home/nfs/public
#mount –t nfs NFS_Server(IP):/directory /mount/point

Example:

#mount –t nfs 192.168.127.100:/home/public /home/nfs/public

Mail
smtpclient is a minimal SMTP client that takes an email message body and passes it on to an SMTP server. It
is suitable for applications that use email to send alert messages or important logs to a specific user.

NOTE Click on the following link for more information about smtpclient: http://www.engelschall.com/sw/smtpclient/

To send an email message, use the ‘smtpclient’ utility, which uses SMTP protocol. Type #smtpclient –help to
see the help message.

http://www.tldp.org/HOWTO/NFS-HOWTO/index.html
http://nfs.sourceforge.net/nfs-howto/client.html
http://nfs.sourceforge.net/nfs-howto/server.html
http://www.engelschall.com/sw/smtpclient/

Moxa C Programmable RTU Controllers Managing Communications

 4-14

Example:

smtpclient –s test –f sender@company.com –S IP_address receiver@company.com
< mail-body-message

-s: The mail subject.
-f: Sender’s mail address
-S: SMTP server IP address

The last mail address receiver@company.com is the receiver’s e-mail address. mail-body-message is the
mail content. The last line of the body of the message should contain ONLY the period ‘.’ character.

You will need to add your hostname to the file /etc/hosts.

OpenVPN
OpenVPN provides two types of tunnels for users to implement VPNS: Routed IP Tunnels and Bridged
Ethernet Tunnels. To begin with, make sure that the system has a virtual device /dev/net/tun. If not, issue
the following command:

mknod /dev/net/tun c 10 200

An Ethernet bridge is used to connect different Ethernet networks together. The Ethernets are bundled into one
bigger, “logical” Ethernet. Each Ethernet corresponds to one physical interface (or port) that is connected to the
bridge.

On each OpenVPN machine, you should generate a working directory, such as /etc/openvpn, where script
files and key files reside. Once established, all operations will be performed in that directory.

NOTE Network interface definition may be different in in different product lines. For ioLogik W5348 series, eth0 =
ppp0(WAN)、eth1 = eth0(LAN)

In the following examples, the OpenVPN A and B represent two Moxa RTU controllers. Note the network
interface definition may be different in different product lines. For ioLogik W5348 series, “eth0” in the example
will be ppp0(cellular WAN), and the “eth1” in the example will be the eth0(LAN)

Setup 1: Ethernet Bridging for Private Networks on Different Subnets

1. Set up four machines, as shown in the following diagram.

Host A (B) represents one of the machines that belongs to OpenVPN A (B). The two remote subnets are
configured for a different range of IP addresses. When this setup is configured to a public network, the
external interfaces of the OpenVPN machines should be configured for static IPs, or connect to another
device (such as a firewall or DSL box) first.

mailto:receiver@company.com

Moxa C Programmable RTU Controllers Managing Communications

 4-15

openvpn --genkey --secret secrouter.key

Copy the file that is generated to the OpenVPN machine.

2. Generate a script file named openvpn-bridge on each OpenVPN machine. This script reconfigures
interface “eth1” as IP-less, creates logical bridge(s) and TAP interfaces, loads modules, enables IP
forwarding, etc.

#---------------------------------Start-----------------------------

#!/bin/sh
iface=eth1 # defines the internal interface
maxtap=`expr 1` # defines the number of tap devices. I.e., # of tunnels
IPADDR=
NETMASK=
BROADCAST=
it is not a great idea but this system doesn’t support
/etc/sysconfig/network-scripts/ifcfg-eth1
ifcfg_vpn()
{
while read f1 f2 f3 f4 r3
do
 if [“$f1” = “iface” -a “$f2” = “$iface” -a “$f3” = “inet” -a “$f4” = “static”];then
 i=`expr 0`
 while :
 do
 if [$i -gt 5]; then
 break
 fi
 i=`expr $i + 1`
 read f1 f2
 case “$f1” in
 address) IPADDR=$f2
 ;;
 netmask) NETMASK=$f2
 ;;
 broadcast) BROADCAST=$f2
 ;;
 esac
 done
 break
 fi
done < /etc/network/interfaces
}
get the ip address of the specified interface
mname=
module_up()
{
 oIFS=$IFS
 IFS=‘
 ‘
 FOUND=“no”
 for LINE in `lsmod`
 do
 TOK=`echo $LINE | cut -d’ ‘ -f1`
 if [“$TOK” = “$mname”]; then
 FOUND=“yes”;

Moxa C Programmable RTU Controllers Managing Communications

 4-16

 break;
 fi
 done
 IFS=$oIFS
 if [“$FOUND” = “no”]; then
 modprobe $mname
 fi
}
start()
{
ifcfg_vpn
if [! \(-d “/dev/net” \)]; then
 mkdir /dev/net
fi
if [! \(-r “/dev/net/tun” \)]; then
 # create a device file if there is none
 mknod /dev/net/tun c 10 200
fi
load modules “tun” and “bridge”
mname=tun
module_up
mname=bridge
module_up
create an ethernet bridge to connect tap devices, internal interface
brctl addbr br0
brctl addif br0 $iface
the bridge receives data from any port and forwards it to other ports.
i=`expr 0`
while :
do
 # generate a tap0 interface on tun
 openvpn --mktun --dev tap${i}
 # connect tap device to the bridge
 brctl addif br0 tap${i}
 # null ip address of tap device
 ifconfig tap${i} 0.0.0.0 promisc up
 i=`expr $i + 1`
 if [$i -ge $maxtap]; then
 break
 fi
done
null ip address of internal interface
ifconfig $iface 0.0.0.0 promisc up
enable bridge ip
ifconfig br0 $IPADDR netmask $NETMASK broadcast $BROADCAST
ipf=/proc/sys/net/ipv4/ip_forward
enable IP forwarding
echo 1 > $ipf
echo “ip forwarding enabled to”
cat $ipf
}
stop() {
echo “shutdown openvpn bridge.”
ifcfg_vpn
i=`expr 0`

Moxa C Programmable RTU Controllers Managing Communications

 4-17

while :
do
 # disconnect tap device from the bridge
 brctl delif br0 tap${i}
 openvpn --rmtun --dev tap${i}
 i=`expr $i + 1`
 if [$i -ge $maxtap]; then
 break
 fi
done
brctl delif br0 $iface
brctl delbr br0
ifconfig br0 down
ifconfig $iface $IPADDR netmask $NETMASK broadcast $BROADCAST
killall -TERM openvpn
}
case “$1” in
 start)
 start
 ;;
 stop)
 stop
 ;;
 restart)
 stop
 start
 ;;
 *)
 echo “Usage: $0 [start|stop|restart]”
 exit 1
esac
exit 0
#---------------------------------- end -----------------------------
Run the shell command to start, stop, or restart the OpenVPN
sh /etc/openvpn/openvpn-bridge start
sh /etc/openvpn/openvpn-bridge stop
sh /etc/openvpn/openvpn-bridge restart

3. Create a configuration file named A-tap0-br.conf and an executable script file named A-tap0-br.sh on
OpenVPN A.

point to the peer
remote 192.168.8.174
dev tap0
secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC
auth MD5
tun-mtu 1500
tun-mtu-extra 64
ping 40
up /etc/openvpn/A-tap0-br.sh
#----------------------------------Start------------------------------
#!/bin/sh
value after “-net” is the subnet behind the remote peer
route add -net 192.168.4.0 netmask 255.255.255.0 dev br0
#---------------------------------- end ------------------------------

Moxa C Programmable RTU Controllers Managing Communications

 4-18

Create a configuration file named B-tap0-br.conf and an executable script file named B-tap0-br.sh on
OpenVPN B.

point to the peer
remote 192.168.8.173
dev tap0
secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC
auth MD5 tun-mtu 1500
tun-mtu-extra 64
ping 40
up /etc/openvpn/B-tap0-br.sh
#----------------------------------Start------------------------------
#!/bin/sh
value after “-net” is the subnet behind the remote peer
route add -net 192.168.2.0 netmask 255.255.255.0 dev br0
#---------------------------------- end ------------------------------

NOTE: Select cipher and authentication algorithms by specifying “cipher” and “auth”. To see with
algorithms are available, type:

openvpn --show-ciphers
openvpn --show—auths

4. Start both of OpenVPN peers,

openvpn --config A-tap0-br.conf&
openvpn --config B-tap0-br.conf&

If you see the line “Peer Connection Initiated with 192.168.8.173:5000” on each machine, the connection
between OpenVPN machines has been established successfully on UDP port 5000.

5. On each OpenVPN machine, check the routing table by typing the command:

route

Destination Gateway Genmsk Flags Metric Ref Use Iface
192.168.4.0 * 255.255.255.0 U 0 0 0 br0

192.168.2.0 * 255.255.255.0 U 0 0 0 br0

192.168.8.0 * 255.255.255.0 U 0 0 0 eth0

Interface eth1 is connected to the bridging interface br0, to which device tap0 also connects, whereas the
virtual device tun sits on top of tap0. This ensures that all traffic from internal networks connected to
interface eth1 that come to this bridge write to the TAP/TUN device that the OpenVPN program monitors.
Once the OpenVPN program detects traffic on the virtual device, it sends the traffic to its peer.

6. To create an indirect connection to Host B from Host A, you need to add the following routing item:

route add –net 192.168.4.0 netmask 255.255.255.0 dev eth0

To create an indirect connection to Host A from Host B, you need to add the following routing item:

route add –net 192.168.2.0 netmask 255.255.255.0 dev eth0

Now ping Host B from Host A by typing:

ping 192.168.4.174

A successful ping indicates that you have created a VPN system that only allows authorized users from one
internal network to access users at the remote site. For this system, all data is transmitted by UDP packets
on port 5000 between OpenVPN peers.

7. To shut down OpenVPN programs, type the command:

killall -TERM openvpn

Moxa C Programmable RTU Controllers Managing Communications

 4-19

Setup 2: Ethernet Bridging for Private Networks on the Same Subnet

1. Set up four machines as shown in the following diagram:

2. The configuration procedure is almost the same as for the previous example. The only difference is that you

will need to comment out the parameter “up” in “/etc/openvpn/A-tap0-br.conf” and
“/etc/openvpn/B-tap0-br.conf”.

Setup 3: Routed IP

1. Set up four machines as shown in the following diagram:

2. Create a configuration file named “A-tun.conf” and an executable script file named “A-tun. sh”.

point to the peer
remote 192.168.8.174
dev tun
secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC
auth MD5
tun-mtu 1500
tun-mtu-extra 64
ping 40
ifconfig 192.168.2.173 192.168.4.174
up /etc/openvpn/A-tun.sh
#----------------------------------Start------------------------------
#!/bin/sh
value after “-net” is the subnet behind the remote peer

Moxa C Programmable RTU Controllers Managing Communications

 4-20

route add -net 192.168.4.0 netmask 255.255.255.0 gw $5
#---------------------------------- end ------------------------------

Create a configuration file named B-tun.conf and an executable script file named B-tun.sh on OpenVPN B:

remote 192.168.8.173
dev tun
secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC
auth MD5
tun-mtu 1500
tun-mtu-extra 64
ping 40
ifconfig 192.168.4.174 192.168.2.173
up /etc/openvpn/B-tun.sh
#----------------------------------Start------------------------------
#!/bin/sh
value after “-net” is the subnet behind the remote peer
route add -net 192.168.2.0 netmask 255.255.255.0 gw $5
#---------------------------------- end ------------------------------

Note that the parameter “ifconfig” defines the first argument as the local internal interface and the second
argument as the internal interface at the remote peer.

Note that $5 is the argument that the OpenVPN program passes to the script file. Its value is the second
argument of ifconfig in the configuration file.

3. Check the routing table after you run the OpenVPN programs, by typing the command:

route

Destination Gateway Genmsk Flags Metric Ref Use Iface

192.168.4.174 * 255.255.255.255 UH 0 0 0 tun0

192.168.4.0 192.168.4.174 255.255.255.0 UG 0 0 0 tun0

192.168.2.0 * 255.255.255.0 U 0 0 0 eth1

192.168.8.0 * 255.255.255.0 U 0 0 0 eth0

5
5. Tool Chains for Application Development

In this chapter we describe how to install a tool chain on the host computer to develop user applications. In
addition, the process for performing cross-platform development and debugging is also introduced. For clarity,
the MOXA C Programming RTU controller is called a target system.

The following topics are covered in this chapter:

 Linux Tool Chain

 Installing the Linux Tool Chain

 Compiling Applications

 On-Line Debugging with GDB

Moxa C Programmable RTU Controllers Tool Chains for Application Development

 5-2

Linux Tool Chain
The Linux tool chain contains a suite of cross compilers and other tools, as well as the libraries and header files
that are necessary to compile your applications. These tool chain components must be installed on a
Linux-based host computer (PC). The following Linux distributions can be used to install the tool chain.

ioPAC 8020 series
• Fedora Core 6 (on x86)

• Mandrake 8.1 (on x86)

• Red Hat 7.3, 8.0, 9.0 (on x86)

• SuSE 7.3 (on x86)

• YellowDog 2.1 (on PowerPC)

• Solaris 7 and 8 (on Sparc)

• Debian 3.1, 4.0 (on x86)

• Ubuntu 9.04. (see note)

ioPAC 8020 & ioLogik W5348 V1.4 (the Glibc version must be greater than 2.7)
• Ubuntu 9.04 (see note)

NOTE Ubuntu users will need to prepare their system by entering the following commands:

 apt-get install libncurse5-dev
 mkdir /mnt/ramdisk

Disregard the ”[==: unexpected operator“ warning when installing the tool chain.

Installing the Linux Tool Chain
The tool chain requires approximately 1 GB of hard disk space. To install the tool chain, follow the steps.

1. Insert the Documentation and Software CD into your PC, and then enter the following commands:

#mount /dev/cdrom /mnt/cdrom
#sh /mnt/cdrom/Software/toolchain/arm-linux_3.3.2_V1.X_BuildXXXXXXXX.sh
(ioPAC 8020 & ioLogik W5348->#sh
/mnt/cdrom/Software/toolchain/arm-linux_V1.X_BuildXXXXXXXX.sh)

2. Wait for the installation process to complete. This should take a few minutes.
3. Add the directory /usr/local/arm-linux/bin to your path. You can do this in the current login by issuing

the following commands:

#export PATH=“/usr/local/arm-linux/bin:$PATH”

4. export LD_LIBRARY_PATH = /usr/local/arm-linux/tools/lib:$(LD_LIBRARY_PATH)

Alternatively, the same commands can be added to $HOME/.bash_profile to make it effective for all login
sessions.

Moxa C Programmable RTU Controllers Tool Chains for Application Development

 5-3

Compiling Applications
To compile a simple C application, use the cross compiler instead of the regular compiler:

#arm-linux-gcc –o example –Wall –g –O2 example.c
#arm-linux-strip –s example
#arm-linux-gcc -ggdb –o example-debug example.c

Most of the cross compiler tools are the same as their native compiler counterparts, only with an additional
prefix that specifies the target system. The prefix is “i386-linux-” for x86 environments and “arm-linux-” for
MOXA RTU controllers. For example, “gcc” is the native C compiler, whereas “arm-linux-gcc” is the cross C
compiler for the ARM-based ioLogik W5348-C/ioPAC 8020-C series.

Moxa provides cross compiler tools for the following native compilers. Simply add the “arm-linux-” prefix.

ar Manages archives (static libraries)

as Assembler

c++, g++ C++ compiler

cpp C preprocessor

gcc C compiler

gdb Debugger

ld Linker

nm Lists symbols from object files

objcopy Copies and translates object files

objdump Displays information about object files

ranlib Generates indexes to archives(static libraries)

readelf Displays information about ELF files

size Lists object file section sizes

strings Prints strings of printable characters from files (usually object files)

strip Removes symbols and sections from object files (usually debugging information)

On-Line Debugging with GDB
The tool chain also provides an on-line debugging mechanism to help you develop your program. Before
starting a debugging session, add the option -ggdb when you compile the program. A debugging session runs
on a client-server architecture on which the server gdbserver is installed on the target system and the client
ddd is installed on the host computer. In the following instructions, we assume that you have uploaded a
program named hello-debug to the target system and wish to debug this program.

1. Log on to the target system and run the debugging server program.

#gdbserver 192.168.4.142:2000 hello-debug
Process hello-debug created; pid=38

This tells the debugging server to listen for connections on network port 2000 of the network interface
192.168.4.142 of the target system. The name of the program to be debugged is indicated after the
network port. Additional arguments can be added after the program name as needed.

2. In the host computer, switch to the directory that contains the program source.

cd /my_work_directory/myfilesystem/testprograms

3. Execute the client program.

#ddd --debugger arm-linux-gdb hello-debug &

4. Enter the following command at the GDB, ddd command prompt.

>> target remote 192.168.4.142:2000

The command produces a line of output on the target system console, similar to the following.
Remote debugging using 192.168.4.99:2000

Moxa C Programmable RTU Controllers Tool Chains for Application Development

 5-4

192.168.4.99 is the host PC’s IP address, and 2000 is the port number. You can now begin debugging in the
host environment using the interface provided by ddd.

5. Set a break point in the main function by double clicking or entering b main on the command line.
6. Click the cont button.

6
6. Programmer's Guide

This chapter includes important information for programmers.

The following topics are covered in this chapter:

 Flash Memory

 C Library

 APIs

Moxa C Programmable RTU Controllers Programmer's Guide

 6-2

Flash Memory
Partition sizes are hard coded into the kernel binary. The flash memory map is shown in the following table.

 Total Size Contents Location Access

System Space 20 MB Boot Loader 0x80000000 to
0x80080000

Read Only

Linux Kernel 0x80080000 to
0x80400000

Root File System (JFFS2) 0x80400000 to
0x81400000

User Space 12 MB User directory (JFFS2) 0x81400000 to
0x82000000

Read/Write

If the user file system is incorrect, the kernel will change the root file system to the kernel and use the default
Moxa file system. To finish the boot process, run the init program.

NOTE 1. The user file system is a complete file system. Users can create and delete directories and files (including
source code and executable files) as needed.

2. Users can create the user file system on the host PC or the target platform and copy it to the ioLogik
W5348-C series or the ioPAC 8020-C series.

3. Continuously writing data to flash is not recommended, since doing so will decrease the flash’s life.

C Library
The ioLogik W5348-C series and ioPAC 8020-C series both support control devices with Moxa APIs. Users will
need to include libmoxa_pgm.h to use the following Moxa APIs.

APIs
For details on APIs, refer to Chapter 2 of “Developer’s Guide for Moxa RTU Controllers.”

7
7. Software Lock

“Software Lock” is an innovative technology developed by Moxa. It can be adopted by a system integrator or
developer to protect his applications from being copied. An application is compiled into a binary format bound
to the embedded computer and the operating system (OS) that the application runs on. As long as one obtains
it from the computer, he/she can install it into the same hardware and the same operating system. The add-on
value created by the developer is thus lost.

Moxa used data encryption to develop this protection mechanism for your applications. The binary file
associated with each of your applications needs to undergo an additional encryption process after you have
developed it. The process requires you to install an encryption key in the target computer.

1. Choose an encryption key (e.g.,”ABigKey”) and install it in the target computer by a pre- utility program,
‘setkey’.

#setkey ABigKey

NOTE: set an empty string to clear the encryption key in the target computer by:

#setkey ““

2. Develop and compile your program in the development PC.

3. In the development PC, run the utility program ‘binencryptor’ to encrypt your program with an encryption
key.

#binencryptor yourProgram ABigKey

4. Upload the encrypted program file to the target computerby FTP or NFS and test the program.

The encryption key is a computer-wise key. That is to say, a computer has only one key installed. Running
the program ‘setkey’ multiple times overrides the existing key.

To prove the effectiveness of this software protection mechanism, prepare a target computer that has not
been installed an encryption key or install a key different from that used to encrypt your program. In any
case, the encrypted program fails immediately.

This mechanism also allows the computer with an encryption key to bypass programs that are not
encrypted. Therefore, in the development phase, you can develop your programs and test them in the
target computer cleanly.

A
A. System Commands

Linux normal command utility collection:

Moxa Special Utilities
1. kversion Show kernel version
2. upramdisk Mount ramdisk
3. downramdisk Unmount ramdisk
4. setdef Reset to factory defaults and reboot
5. setkey Set key command for Software Lock function
6. upgradehfm Firmware upgrade utility

To view the supported system commands, use the "help" or "busybox --help" commands, as illustrated in the
following examples for the ioPAC 8500 controller (RTU version 1.2.0).

"help" command:

root@Moxa:~# help

GNU bash, version 3.2.39(1)-release (arm-unknown-linux-gnu)

These shell commands are defined internally. Type `help' to see this list.

Type `help name' to find out more about the function `name'.

Use `info bash' to find out more about the shell in general.

Use `man -k' or `info' to find out more about commands not in this list.

A star (*) next to a name means that the command is disabled.

 JOB_SPEC [&] ((expression))

 . filename [arguments] :

 [arg...] [[expression]]

 alias [-p] [name[=value] ...] bind [-lpvsPVS] [-m keymap] [-f fi

 break [n] builtin [shell-builtin [arg ...]]

 caller [EXPR] case WORD in [PATTERN [| PATTERN].

 cd [-L|-P] [dir] command [-pVv] command [arg ...]

 compgen [-abcdefgjksuv] [-o option complete [-abcdefgjksuv] [-pr] [-o

 continue [n] declare [-afFirtx] [-p] [name[=val

 dirs [-clpv] [+N] [-N] echo [-neE] [arg ...]

 enable [-pnds] [-a] [-f filename] eval [arg ...]

 exec [-cl] [-a name] file [redirec exit [n]

 export [-nf] [name[=value] ...] or false

 fc [-e ename] [-nlr] [first] [last for NAME [in WORDS ... ;] do COMMA

 for ((exp1; exp2; exp3)); do COM function NAME { COMMANDS ; } or NA

 getopts optstring name [arg] hash [-lr] [-p pathname] [-dt] [na

 help [-s] [pattern ...] history [-c] [-d offset] [n] or hi

 if COMMANDS; then COMMANDS; [elif kill [-s sigspec | -n signum | -si

 let arg [arg ...] local name[=value] ...

 logout popd [+N | -N] [-n]

 printf [-v var] format [arguments] pushd [dir | +N | -N] [-n]

 pwd [-LP] read [-ers] [-u fd] [-t timeout] [

Moxa C Programmable RTU Controllers System Commands

 A-2

 readonly [-af] [name[=value] ...] return [n]

 select NAME [in WORDS ... ;] do CO set [--abefhkmnptuvxBCHP] [-o opti

 shift [n] shopt [-pqsu] [-o long-option] opt

 source filename [arguments] test [expr]

 time [-p] PIPELINE times

 trap [-lp] [arg signal_spec ...] true

 type [-afptP] name [name ...] typeset [-afFirtx] [-p] name[=valu

 ulimit [-SHacdfilmnpqstuvx] [limit umask [-p] [-S] [mode]

 unalias [-a] name [name ...] unset [-f] [-v] [name ...]

 until COMMANDS; do COMMANDS; done variables - Some variable names an

 wait [n] while COMMANDS; do COMMANDS; done

 { COMMANDS ; }

"busybox --help" command:

root@Moxa:/# busybox --help

BusyBox v1.15.3 (2013-02-18 13:27:47 CST) multi-call binary

Copyright (C) 1998-2008 Erik Andersen, Rob Landley, Denys Vlasenko

and others. Licensed under GPLv2.

See source distribution for full notice.

Usage: busybox [function] [arguments]...

 or: function [arguments]...

 BusyBox is a multi-call binary that combines many common Unix

 utilities into a single executable. Most people will create a

 link to busybox for each function they wish to use and BusyBox

 will act like whatever it was invoked as!

Currently defined functions:

 [, [[, addgroup, adduser, arp, awk, basename, brctl, bunzip2, bzcat,

 bzip2, cat, chat, chgrp, chmod, chown, chroot, clear, cp, crond,

 crontab, cut, date, delgroup, deluser, depmod, df, dirname, dmesg,

 dnsdomainname, du, echo, egrep, env, expr, false, fdisk, fgrep, find,

 flash_eraseall, free, freeramdisk, getty, grep, gunzip, gzip, halt,

 head, hostname, hwclock, id, ifconfig, ifdown, ifenslave, ifup, inetd,

 insmod, ip, kill, killall, killall5, klogd, ln, login, ls, lsmod,

 md5sum, mdev, mkdir, mkfifo, mknod, mktemp, modprobe, more, mount, mv,

 netstat, nice, passwd, pidof, ping, poweroff, ps, pwd, reboot, renice,

 rm, rmdir, rmmod, route, run-parts, sed, sleep, start-stop-daemon,

 stty, su, sulogin, sync, syslogd, tail, tar, tcpsvd, telnet, telnetd,

 test, tftp, top, touch, traceroute, true, udhcpc, umount, uname, vi,

 which, xargs, zcat

B
B. Module Specifications and Wiring

16-channel 24 VDC Digital Input Module

RM-1602-T: 16 digital inputs, 24 VDC, sink/source type
Inputs per Module: 16 channels, sink/source type
On-state Voltage: 24 VDC nominal, 10 VDC min.
OFF-state Voltage: 0 to 3 VDC, 3 VDC max.
Input Impedance: 3K ohms (typical)
Common Type: 16 channels / 2 DI_COMs
Response Time: 10 ms
Over Current Protection: 200 mA per channel
Isolation: I/O to logic (photocoupler isolation)
Operating Temperature: -40 to 75°C
Power Consumption: 20 mA @ 24 VDC (typical)
I/O Cable Wire: AWG 14 (2.0 mm x mm) max.

10-channel 110 VDC Digital Input Module

RM-1050-T: 10 digital inputs, 110 VDC, isolated
Inputs per Module: 10 channels, 110 VDC, channel-to-channel
isolated
On-state Voltage: 72 VDC nominal, 50 VDC (min.) to 175 VDC
(max.)
Off-state Voltage: 0 to 15 VDC, 15 VDC max.
Input Impedance: 120K ohms (typical)
Common Type: None
Response Time: 10 ms
Over Current Protection: 200 mA per channel
Isolation: I/O to logic (photocoupler isolation)
Channel-to-Channel Isolation: 2.5K VDC
Operating Temperature: -40 to 75°C
Power Consumption: 24 mA @ 24 VDC (typical)
I/O Cable Wire: AWG 14 (2.0 mm x mm) max.

Moxa C Programmable RTU Controllers Module Specifications and Wiring

 B-2

16-channel Digital Output Module

RM-2600-T: 16 digital outputs, 24 VDC, sink type, 0.2 A
Outputs er Module: 16 channels, 24 VDC, sink type
Output Impedance: 120m ohms (typical)
Off-state Resistance: 500K ohms (typical)
Response Time: 10 ms
Over Current Protection: 200 mA per channel
Isolation: I/O to logic (photocoupler isolation)
Channel-to-Channel Isolation: 2.5K VDC
Operating Temperature: -40 to 75°C
Power Consumption: 24 mA @ 24 VDC (typical)
I/O Cable Wire: AWG 14 (2.0 mm x mm) max.

8-channel Analog Input Module, 16-bit Resolution

RM-3802-T: 8 analog inputs, 4 to 20 mA, 16 bits
Inputs per Module: 8 channels, differential
Input Current Range: 4 to 20 mA
Input Impendence: 120 ohms
Resolution Range: 16 bits, 0.24 μA/bit
Accuracy:
±0.1%, FSR @ 25°C
±0.3%, FSR @ -40°C, 75°C
Sampling Rate:
• All channels: 12 samples/sec
• Per channel: 1.5 samples/sec

Over Current Protection: 200 mA per channel
Isolation: I/O to logic (photocoupler isolation)
Channel-to-Channel Isolation: 2.5K VDC
Operating Temperature: -40 to 75°C
Power Consumption: 30 mA @ 24 VDC (typical)
I/O Cable Wire: AWG 14 (2.0 mm x mm) max.

Moxa C Programmable RTU Controllers Module Specifications and Wiring

 B-3

8-channel Analog Input Module, 16-bit Resolution

RM-3810-T: 8 analog inputs, 0 to 10 V, 16 bits
Inputs per Module: 8 channels, differential
Input Current Range: 0 to 10 VDC
Input Impendence: > 10M ohms
Resolution Range: 16 bits, 0.15 μA/bit
Data Format: 16-bit integer (2’s complement)
Accuracy:
±0.1%, FSR @ 25°C
±0.3%, FSR @ -40°C, 75°C
Sampling Rate:
• All channels: 12 samples/sec
• Per channel: 1.5 samples/sec

Over Current Protection: 200 mA per channel
Isolation: I/O to logic (photocoupler isolation)
Channel-to-Channel Isolation: 2.5K VDC
Operating Temperature: -40 to 75°C
Power Consumption: 30 mA @ 24 VDC (typical)
I/O Cable Wire: AWG 14 (2.0 mm x mm) max.

NOTE The 9th slot of the ioPAC 8020-9 series is reserved for future expansion. All I/O modules may only be installed
in slot 1 through slot 8.

4-port unmanaged Ethernet Switch Module

16-channel 24 VDC Digital Input Module

KM-2430-T: 4-port unmanaged Ethernet switch module, with M12 connector
Standards:
IEEE 802.3 for 10BaseT
IEEE 802.3u for 100BaseT(X)
IEEE 802.3ab for 1000BaseT(X)
IEEE 802.3x for Flow Control
Processing Type: Store and Forward
Interface: Front cabling, M12 connector, 10/100BaseT(X) auto negotiation speed
Operating Temperature: -40 to 75°C
Power Consumption: 20 mA @ 24 VDC (typical)

	1. Introduction
	Overview
	Software Architecture
	Journaling Flash File System (JFFS2)
	Software Package

	Available Products
	ioPAC 8020-C Series
	ioLogik W5348-C Series

	Product Specifications
	ioPAC 8020 Series
	ioLogik W5348 Series

	2. Getting Started
	I/O and Communication Module Installation
	Correct Installation (module installation in steps, from right to left)
	Incorrect Installation (in steps, from right to left)

	KM-2430 DIP Switch Setting
	Installing the RTU Controller on a DIN-Rail
	ioPAC 8020-C Series
	Removing ioPAC 8020-C Series from the DIN-Rail

	ioLogik W5348-C Series

	Grounding the RTU Controller
	ioPAC 8020-C Series
	ioLogik W5348 Series:

	Powering on the RTU Controller
	Power Terminal Block for ioLogik W5348-C Series
	Power Terminal Block for ioPAC 8020-C Series
	Connecting to a Serial Device

	LED Indicators
	ioPAC 8020-C Series
	ioLogik W5348-C Series

	Connecting the RTU Controller to a PC
	Serial Console
	Console Port for the ioPAC 8020-C Series
	Console Port for the ioLogik W5348-C Series
	Pin Assignment for the Serial Console Port
	Serial Console

	Telnet Console
	SSH Console
	Windows Users
	Linux Users

	RTUAdmin Utility
	Installing RTUAdmin
	Broadcast Search
	Main Screen Overview
	Title
	Menu Bar
	Quick Link
	Navigation Panel
	Main Window
	Sync Rate Status
	Status Bar

	Configuring the Ethernet Interface
	Modifying Network Settings via Serial Console
	Static IP addresses
	Dynamic IP addresses

	Adding a Default Gateway
	Adding DNS Settings

	Developing Procedures
	Installing the Tool Chain (Linux)
	Checking the Flash Memory Space
	Compiling Hello.c
	Uploading and Running the “Hello” Program

	3. Managing the RTU Controllers
	System Version Information
	Firmware Upgrade and Default Settings
	Upgrading the Firmware
	Loading Factory Defaults

	Enabling and Disabling Daemons
	Setting the Run-Level
	Adjusting the System Time
	Setting the Time Manually
	Updating the Time with NTP Client
	Updating the Time Automatically

	Executing Scheduled Commands with Cron Daemon

	4. Managing Communications
	Telnet/FTP
	Enabling the Telnet/FTP Server
	Disabling the Telnet/FTP Server

	DNS
	IPTABLES
	Observe and Erase Chain Rules
	Define Policy for Chain Rules
	Append or Delete Rules

	NAT
	NAT Example
	Enabling NAT at Bootup

	Dial-up Service—PPP
	Example 1: Connecting to a PPP Server over a Simple Dial-up Connection
	Example 2: Connecting to a PPP Server over a Hard-wired Link
	How to Check the Connection
	Setting up a Machine for Incoming PPP Connections

	PPPoE
	PPP over Cellular
	NFS (Network File System)
	Setting up the RTU Controller as an NFS Client

	Mail
	OpenVPN
	Setup 1: Ethernet Bridging for Private Networks on Different Subnets
	Setup 2: Ethernet Bridging for Private Networks on the Same Subnet
	Setup 3: Routed IP

	5. Tool Chains for Application Development
	Linux Tool Chain
	Installing the Linux Tool Chain
	Compiling Applications
	On-Line Debugging with GDB

	6. Programmer's Guide
	Flash Memory
	C Library
	APIs

	7. Software Lock
	A. System Commands
	B. Module Specifications and Wiring

